Skip to main content
Log in

Theoretical and Experimental analysis of ZnPc for its local ordering and electronic structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc Phthalocyannine (ZnPc) has been investigated intensely for fabricating plastic solar cells, and there are very limited reports available relating molecular structure and its corresponding macroscopic properties linked with simulation and electronic structure. In fact, our previous reports have demonstrated a partial ordering of the ZnPc molecules [1]. As a continuation of our previous work, we report here the structural determination of atomic and electronic distribution in this material, and a detailed analysis of its involvement in interactions that produce local domains in partial periodic structures. The use of high resolution transmission electron microscopy (HRTEM) and digital processing based on the frequency selection allowed us to distinguish the contrast from local arrays of fringes with distances around 0.37 and 0.35 nm between them. From the quantum mechanical calculations and approximations for single molecules and from classical molecular mechanics for two to six molecule arrays, we identified the type of ordering and the effects on the corresponding frontier orbital (HOMO and LUMO) and the electrostatic potential. The calculated models and a simulation of the HRTEM images demonstrate that the molecular arrays observed in the samples are determined by the electrostatic interactions and the production of arrays influence significantly the optical and electronic properties of the ZnPc material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Senthilarasu, S. Velumani, R. Sathyamoorthy, A. Subbarayan, J.A. Ascencio, G. Canizal, P.J. Sebastián, J.A. Chávez, R. Pérez: Appl. Phys. A 77, 383 (2003)

    Article  ADS  Google Scholar 

  2. N. Uyeda, M. Ashida, E. Suito: J. Appl. Phys. 36, 1453 (1965)

    Article  ADS  Google Scholar 

  3. P.A. Lane, J. Rostalski, C. Giebeler, S.J. Martin, D.D.C. Bradley, D. Meissner: Solar Energy Mater. Solar Cells 63, 3 (2000)

    Article  ADS  Google Scholar 

  4. D. Wrobel, A. Boguta: J. Photochem. Photobiol. A 6045, 1 (2002)

    Google Scholar 

  5. J. Spence: In Experimental High Resolution Electron Microscopy (Oxford University Press, Oxford, UK 1988)

  6. Z.L. Wang: In Elastic and Inelastic Scattering in Electron Diffraction and Imaging (Plenum Press; New York 1995)

  7. B. Romanowicz, X.-D. Li, J. Durek: Science 274, 963 (1996)

    Article  ADS  Google Scholar 

  8. M. José-Yacamán, J.A. Ascencio: Handbook of Nanoestructured Materials and Nanotechnology, ed. by H. S. Nalwa (Academic Press 1999) Chapt. 14

  9. C. Gutiérrez-Wing, P. Santiago, J.A. Ascencio, A. Camacho, M. José Yacamán: Appl. Phys. A 71, 237 (2000)

    Article  ADS  Google Scholar 

  10. F. García-Santibañez, A. Barragán-Vidal, A. Gutiérrez, M. Mendoza, J.A. Ascencio: Appl. Phys. A 71, 219 (2000)

    ADS  Google Scholar 

  11. H. Sirringhaus, N. Tessler, R.H. Friend: Science 280, 1741 1998

    Google Scholar 

  12. J.-J. Kim, Y. Choi, S. Suresh, A.S. Argon: Science 295, 654 2002

    Google Scholar 

  13. J.A. Ascencio, C. Gutiérrez-Wing, M.E. Espinosa-Pesqueira, M. Marín, S. Tehuacanero, C. Zorrilla, M. José-Yacamán: Surf. Sci. 396, 349 (1998)

    Article  ADS  Google Scholar 

  14. W.R. Scheidt, W. Dow: J. Am. Chem. Soc. 99, 1101 (1977)

    Article  Google Scholar 

  15. T. Hashimoto, Y.-K. Choe, H. Nakano, K Hirao: J. Phys. Chem. A 103, 1894 (1999)

    Article  Google Scholar 

  16. B. G Jonson: Modern Density Functional Theory. A Tool for Chemistry (Elsevier: Amsterdam 1995)

  17. C. Lee, W. Yang, R.G. Parr: Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  18. M.J. S Dewar, W. Thiel: J. Am. Chem. Soc. 99, 4899 (1977)

    Article  Google Scholar 

  19. P. Anderson, M. Edwards, M.C. Zerner: Inor. Chem. 28, 2728 (1986)

    Article  Google Scholar 

  20. J.B. Foresman, M. Head-Gordon, J.A. Pople, M.J. Frisch: J. Phys. Chem. 96, 135 (1992)

    Article  Google Scholar 

  21. U. Burkert, N. Allinger: Molecular Mechanics (American Chemical Society, Washington D.C. 1982)

  22. M.J. S Dewar, E.G. Zoebisch E.F. Healy, J.J.P. Stewart: J. Am. Chem. Soc. 107, 3902 (1985)

    Article  Google Scholar 

  23. SimulaTEM software, ed. by A. Gomez and L. Beltran. (http://www.fisica.unam.mx, Mexico)

  24. L. Edwards, M. Gouterman: J. Mol. Spectrosc. 33, 292 (1970)

    Article  ADS  Google Scholar 

  25. E.M. Maya, E.M. García-Frutos, P. Vázquez, T. Torres, G. Martín, G. Rojo. F. Agulló-López, R.H. González-Jonte, V.R. Ferro, J.M. García de la Vega, I. Ledoux J. Zyss: J. Phys. Chem. A 107, 2110 (2003) and references therein

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.A. Ascencio.

Additional information

PACS

84.60.Jt; 87.64.Ee; 02.70.Ns; 03.65.2w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosquete-Pina, G., Zorrilla, C., Velumani, S. et al. Theoretical and Experimental analysis of ZnPc for its local ordering and electronic structure. Appl. Phys. A 79, 1913–1918 (2004). https://doi.org/10.1007/s00339-004-2740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2740-9

Keywords

Navigation