Skip to main content
Log in

Low temperature growth and dimension- dependent photoluminescence efficiency of semiconductor nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low temperature growth and dimension dependent photoluminescence (PL) efficiency of semiconductor nanowires were investigated with CdS as a model system. The CdS nanowires were prepared with a simple, low temperature metal-organic chemical vapor deposition (MOCVD) process via the vapor–liquid–solid (VLS) mechanism. The low growth temperature of 360 °C was made possible with a newly developed single-source precursor of CdS and by using sputtered Au as the catalyst for the VLS growth. The length and diameter of the nanowires were adjusted by reaction time and sputtering conditions of Au, respectively. Nanowires of up to several μm in length and 20 to 200 nm in diameter were obtained. The PL quantum yield of the nanowires was found to decrease with increasing wire length, but to increase with decreasing wire diameter. This dimension-dependent PL efficiency of one-dimensional nanostructure, unlikely resulting from the quantum size confinement effect, appears to be a new observation that carries application significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Lieber: Solid State Commun. 107, 607 (1998); J. Hu, T.W. Odom, C.M. Lieber: Acc. Chem. Res. 32, 435 (1999)

    Article  ADS  Google Scholar 

  2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan: Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  3. Y. Cui, X. Duan, J. Hu, C.M. Lieber: J. Phys. Chem. B 104, 5213 (2000)

    Article  Google Scholar 

  4. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber: Nature 409, 66 (2000)

    Article  ADS  Google Scholar 

  5. Y. Cui, C.M. Lieber: Science 291, 891 (2000)

    Google Scholar 

  6. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber: Science 294, 1313 (2001)

    Article  ADS  Google Scholar 

  7. A.M. Morales, C.M. Lieber: Science 279, 208 (1998); X. Duan, C.M. Lieber: J. Am. Chem. Soc. 122, 188 (2000); X. Duan, C.M. Lieber: Adv. Mater. 12, 298 (2000)

    Article  ADS  Google Scholar 

  8. Y. Wu, P. Yang: J. Am. Chem. Soc. 123, 3165 (2001)

    Article  Google Scholar 

  9. R. Ma, Y. Bando: Chem. Mater. 14, 4403 (2002)

    Article  Google Scholar 

  10. Y. Wang, G. Meng, L. Zhang, C. Liang, J. Zhang: Chem. Mater. 14, 1773 (2002); Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng: Chem. Phys. Lett. 357, 314 (2002)

    Article  Google Scholar 

  11. C.-C. Chen, C.-C. Yeh, C.-H. Chen, M.-Y. Yu, H.-L. Liu, J.-J. Wu, K.-H. Chen , L.-C. Chen, J.-Y. Peng, Y.-F. Chen: J. Am. Chem. Soc. 123, 2791 (2001)

    Article  Google Scholar 

  12. D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu: J. Phys. Chem. 100, 14 037 (1996)

    Article  Google Scholar 

  13. Y. Li, D. Xu, Q. Zhang, D. Chen, F. Huang, Y. Xu, G. Guo, Z. Gu: Chem. Mater. 11, 3433 (1999)

    Article  ADS  Google Scholar 

  14. D. Xu, X. Shi, G. Guo, L. Gui, Y. Tang: J. Phys. Chem. B 104, 5061 (2000)

    Article  Google Scholar 

  15. X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, Y. Qian: Chem. Mater. 13, 1213 (2001)

    Article  Google Scholar 

  16. J. Jorritsma, M.A.M. Gijs, J.M. Kerkhof, J.G.H. Stienen: Nanotechnology 7, 263 (1996)

    Article  ADS  Google Scholar 

  17. E. Olson, G.C. Spalding, A.M. Goldman, M.J. Rooks: Appl. Phys. Lett. 65, 2740 (1994)

    Article  ADS  Google Scholar 

  18. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, C.R.C. Wang: J. Phys. Chem. B 101, 6661 (1997)

    Article  Google Scholar 

  19. L. Huang, H. Wang, Z. Wang, A. Mitra, K.N. Bozhilov, Y. Yan: Adv. Mater. 14, 61 (2002)

    Article  ADS  Google Scholar 

  20. Y. Li, H. Liao, Y. Ding, Y. Fan, Y. Zhang, Y. Qian: Inorg. Chem. 38, 1382 (1999)

    Article  Google Scholar 

  21. C.-C. Chen, C.-Y. Chao, Z.-H. Lang: Chem. Mater. 12, 1516 (2000)

    Article  ADS  Google Scholar 

  22. P.S. Nair, T. Radhakrishnan, N. Revaprasadu, G.A. Kolawole, P. O’Brien : Chem. Commun. 564 (2002)

  23. L. Vayssieres: Adv. Mater. 15, 464 (2003)

    Article  Google Scholar 

  24. Y. Zhang, N. Wang, S. Gao, R. He, Shu. Miao, J. Liu, J. Zhu, X. Zhang: Chem. Mater. 14, 3564 (2002)

    Article  Google Scholar 

  25. Z.R. Dai, Z.W. Pan, Z.L. Wang: J. Phys. Chem. B 106, 902 (2002); Z.R. Dai, J.L. Gole, J.D. Stout, Z.L. Wang: J. Phys. Chem. B 106, 1274 (2002)

    Article  Google Scholar 

  26. H.-F. Zhang, A.C. Dohnalkova, C.-M. Wang, J.S. Young, E.C. Buck, L.-S. Wang : Nano Lett. 2, 105 (2002)

    Article  ADS  Google Scholar 

  27. R. Nomura, T. Murai, T. Toyosaki, H. Matsuda: Thin Solid Films 271, 4 (1995)

    Article  ADS  Google Scholar 

  28. P. O’Brien, J.R. Walsh, I.M. Watson, L. Hart, S.R.P. Silva: J. Cryst. Growth 167, 133 (1996) M. Motevalli, P. O’Brien , J.R. Walsh, I.M. Watson: Polyhedron 15, 2801 (1996) M.A. Malik, N. Revaprasadu, P. O’Brien : Chem. Mater. 13, 913 (2001)

    Article  ADS  Google Scholar 

  29. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber: Nature 409,66 (2001); X. Duan, Y. Huang, R. Agarwal, C.M. Lieber: Nature 421, 241 (2003)

    Article  ADS  Google Scholar 

  30. In this work, the catalyst, Au, was sputtered on the quartz substrates with a SPI-MODULE sputter coater. The expression to determine the equivalent thickness of the sputtered Au was from the instruction manual of the SPI-MODULE coater.

  31. Hitachi Scientific Instrument Technical Data, FL No.24.

  32. M.S. Gudiksen, C.M. Lieber: J. Am. Chem. Soc. 122, 8801 (2000); M.S. Gudiksen, J. Wang, C.M. Lieber: J. Phys. Chem. B 105, 4062 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-Y. Lu.

Additional information

PACS

74.25.Gz; 78.55.Et; 78.67.Lt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, YJ., Lu, SY. Low temperature growth and dimension- dependent photoluminescence efficiency of semiconductor nanowires. Appl. Phys. A 81, 573–578 (2005). https://doi.org/10.1007/s00339-004-2714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2714-y

Keywords

Navigation