Skip to main content
Log in

Photomechanical spallation of molecular and metal targets: molecular dynamics study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microscopic mechanisms of photomechanical spallation are investigated in a series of large-scale molecular dynamics simulations performed for molecular and metal targets. A mesoscopic breathing sphere model is used in simulations of laser interaction with molecular targets. A coupled atomistic-continuum model that combines a molecular dynamics method with a continuum description of the laser excitation and subsequent relaxation of the conduction band electrons is used for metal targets. Similar mechanisms of the laser-induced photomechanical spallation are observed for molecular and metal targets. For both target materials, the relaxation of compressive stresses generated under conditions of stress confinement is found to be the main driving force for the nucleation, growth and coalescence of voids in a subsurface region of an irradiated target at laser fluences close to the threshold for fragmentation. The mechanical stability of the region subjected to the void nucleation is strongly affected by the laser heating and the depth of the spallation region in bulk targets is much closer to the surface as compared with the depth where the maximum tensile stresses are generated. Two stages can be identified in the evolution of voids in laser spallation, the initial void nucleation and growth, with the number of voids of all sizes increasing, followed by void coarsening and coalescence, when the number of large voids increases at the expense of the quickly decreasing population of small voids. The void volume distributions are found to be relatively well described by the power law N(V)∼V, with exponent gradually increasing with time. Comparison of the simulation results obtained for Ni films of two different thicknesses and bulk Ni targets suggests that the size/shape of the target plays an important role in laser spallation. The reflection of the laser-induced pressure wave from the back surface of a film results in higher maximum tensile stresses and lower threshold fluence for spallation. As the size of the film increases, the locations of the spallation region and the region of the maximum tensile stresses are splitting apart and the threshold fluence for spallation increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Paltauf, P.E. Dyer: Chem. Rev. 103, 487 (2003)

    Article  Google Scholar 

  2. A.A. Oraevsky, S.L. Jacques, F.K. Tittel: J. Appl. Phys. 78, 1281 (1995)

    Article  ADS  Google Scholar 

  3. G. Paltauf, H. Schmidt-Kloiber: Appl. Phys. A 62, 303 (1996)

    Article  ADS  Google Scholar 

  4. D. Kim, M. Ye, C.P. Grigoropoulos: Appl. Phys. A 67, 169 (1998)

    Article  ADS  Google Scholar 

  5. I. Itzkan, D. Albagli, B.J. Banish, M. Dark, C. von Rosenberg, L.T. Perelman, G.S. Janes, M.S. Feld: AIP Conf. Proc. 288, 491 (1994)

    Article  ADS  Google Scholar 

  6. R. Cramer, R.F. Haglund, Jr., F. Hillenkamp: Int. J. Mass Spectrom. Ion Process. 169/170, 51 (1997)

  7. R.L. Webb, J.T. Dickinson, G.J. Exarhos: Appl. Spectrosc. 51, 707 (1997)

    Article  ADS  Google Scholar 

  8. D.E. Hare, J. Franken, D.D. Dlott: J. Appl. Phys. 77, 5950 (1995)

    Article  ADS  Google Scholar 

  9. L.V. Zhigilei, B.J. Garrison: J. Appl. Phys. 88, 1281 (2000)

    Article  ADS  Google Scholar 

  10. A.G. Zhidkov, L.V. Zhigilei, A. Sasaki, T. Tajima: Appl. Phys. A 73, 741 (2001)

    Article  ADS  Google Scholar 

  11. L.V. Zhigilei: Appl. Phys. A 76, 339 (2003)

    Article  ADS  Google Scholar 

  12. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman: Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  13. R.L. Webb, L.C. Jensen, S.C. Langford, J.T. Dickinson: J. Appl. Phys. 74, 2323 (1993); ibid, 2338 (1993)

    Article  ADS  Google Scholar 

  14. A.A. Oraevsky, R. Esenaliev, S.L. Jacques, F.K. Tittel: SPIE Proc. Series 2391, 300 (1995)

    Article  ADS  Google Scholar 

  15. A. Vogel, V. Venugopalan: Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  16. G.I. Kanel, S.V. Razorenov, A. Bogatch, A.V. Utkin, V.E. Fortov, D.E. Grady: J. Appl. Phys. 79, 8310 (1996)

    Article  ADS  Google Scholar 

  17. S. Eliezer, E. Moshe, D. Eliezer: Laser Part. Beams 20, 87 (2002)

    Article  ADS  Google Scholar 

  18. D.S. Ivanov, L.V. Zhigilei: Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  19. D.S. Ivanov, L.V. Zhigilei: Phys. Rev. Lett. 91, 105701 (2003)

    Article  ADS  Google Scholar 

  20. A. Miotello, R. Kelly: Appl. Phys. A 69, S67 (1999)

  21. Y. Tsuboi, K. Hatanaka, H. Fukumura, H. Masuhara: J. Phys. Chem. A 102, 1661 (1998)

    Article  Google Scholar 

  22. L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison: J. Phys. Chem. B 101, 2028 (1997); ibid. 102, 2845 (1998)

    Article  Google Scholar 

  23. L.V. Zhigilei, B.J. Garrison: Mater. Res. Soc. Symp. Proc. 538, 491 (1999)

    Article  Google Scholar 

  24. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man: Zh. Eksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)]

    ADS  Google Scholar 

  25. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly: Acta Mater. 49, 4005 (2001)

    Article  Google Scholar 

  26. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias: Chem. Phys. 251, 237 (2000)

    Article  Google Scholar 

  27. R.S. Dingus, R.J. Scammon: SPIE Proc. 1427, 45 (1991)

    Article  ADS  Google Scholar 

  28. D. Perez, L.J. Lewis: Phys. Rev. Lett. 89, 255504 (2002)

    Article  ADS  Google Scholar 

  29. S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, A.M. Oparin, Yu.V. Petrov: Pis’ma Zh. Eksp. Teor. Fiz. 77, 731 (2003) [JETP Lett. 77, 606 (2003)]

    Google Scholar 

  30. M.S. Daw, S.M. Foiles, M.I. Baskes: Mater. Sci. Rep. 9, 251 (1993)

    Article  Google Scholar 

  31. G. Paltauf, H. Schmidt-Kloiber: Appl. Phys. A 68, 525 (1999)

    Article  ADS  Google Scholar 

  32. L.V. Zhigilei, B.J. Garrison: Appl. Surf. Sci. 127129, 142 (1998)

  33. T.A. Schoolcraft, G.S. Constable, L.V. Zhigilei, B.J. Garrison: Anal. Chem. 72, 5143 (2000)

    Article  Google Scholar 

  34. A. Upadhyay, H.M. Urbassek: unpublished

  35. D.S. Ivanov, L.V. Zhigilei: Appl. Phys. A, DOI 10.1007/s00339-004-2607-0

  36. I.S. Bitensky, E.S. Parilis: Nucl. Instrum. Methods Phys. Res., Sect. B 21, 26 (1987)

    Article  ADS  Google Scholar 

  37. M.I. Fisher: Rep. Prog. Phys. 30, 615 (1967)

    Article  ADS  Google Scholar 

  38. H.M. Urbassek: Nucl. Instrum. Methods Phys. Res., Sect. B 31, 541 (1988)

    Article  ADS  Google Scholar 

  39. A. Strachan, T. Çagin, W.A. Goddard III: Phys. Rev. B 63, 060103 (2001)

    Article  ADS  Google Scholar 

  40. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov: Phys. Rev. Lett. 81, 224 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.V. Zhigilei.

Additional information

PACS

79.20.Ds; 61.80.Az; 02.70.Ns; 83.60.Uv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leveugle, E., Ivanov, D. & Zhigilei, L. Photomechanical spallation of molecular and metal targets: molecular dynamics study. Appl Phys A 79, 1643–1655 (2004). https://doi.org/10.1007/s00339-004-2682-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2682-2

Keywords

Navigation