Advertisement

Applied Physics A

, Volume 79, Issue 4–6, pp 973–975 | Cite as

Arrays of 3D micro-columns generated by laser ablation of Ta and steel: modelling of a black body emitter

  • A. Bensaoula
  • C. Boney
  • R. Pillai
  • G.A. ShafeevEmail author
  • A.V. Simakin
  • D. Starikov
Article

Abstract

Three-dimensional extended arrays of micro-columns are generated on the surface of Ta and several stainless steels by their ablation by radiation of a Cu vapor laser either in vacuum or in air. The reflectivity of the arrays is tested in both visible and near-IR regions using the facilities at NASA Johnson Space Center. The reflectivity of the laser-treated areas was found to be very low (0.03–0.08) in the range 250–2800 nm. The emissivity of 3D arrays measured at elevated temperatures is close to the emissivity of a calibrated black body emitter. The effects of the experimental conditions of ablation (laser fluence, environment, etc.) on the integral optical characteristics of the generated arrays are discussed.

Keywords

Radiation Stainless Steel Elevated Temperature Emissivity Laser Ablation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Sànchez, J.L. Morenza, R. Aguiar, J.C. Delgado, M. Varela: Appl. Phys. Lett. 69, 620 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    F. Sànchez, J.L. Morenza, R. Aguiar, J.C. Delgado, M. Varela: Appl. Phys. A 66, 83 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    T.H. Her, R.F. Finlay, C. Wu, S. Deliwala, E. Mazur: Appl.Phys.Lett. 73, 1673 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    T.H. Her, R.F. Finlay, C. Wu, S. Deliwala, E. Mazur: Appl.Phys.A 70, 383 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Pedraza, J.D. Fowlkes, D.H. Lowndes: Appl. Phys. Lett. 74, 2322 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    A.J. Pedraza, J.D. Fowlkes, D.H. Lowndes: Appl. Phys. A 69, 731 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    T.J. Bastow: Nature 222, 1058 (1969)ADSCrossRefGoogle Scholar
  8. 8.
    A.B. Brailovsky, S.V. Gaponov, V.I. Luchin: Appl.Phys. A 61, 81 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    I. Ursu, I.N. Mihailescu, A.L. Popa, A.M. Prokhorov, V.P. Ageev, A.A. Gorbunov, V.I. Konov: J. Appl. Phys. 58, 3909 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    V.V. Voronov, S.I. Dolgaev, S.V. Lavrischev, A.A. Lyalin, A.V. Simakin, G.A. Shafeev: Phys. of Vibrations 7, 1 (1999)Google Scholar
  11. 11.
    V.V. Voronov, S.I. Dolgaev, S.V. Lavrischev, A.A. Lyalin, A.V. Simakin, G.A. Shafeev: Appl.Phys. A 73, 177 (2000)Google Scholar
  12. 12.
    V.V. Voronov, S.I. Dolgaev, S.V. Lavrischev, A.A. Lyalin, A.V. Simakin, G.A. Shafeev: Quant. Electron. 30, 710 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Kawakami, E. Ozawa: Appl. Surf. Sci. 218, 175 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Karabutov, V.D. Frolov, A.V. Simakin, G.A. Shafeev: J. Vac. Sci. Technol., B 21, 449 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    A.V. Karabutov, V.D. Frolov, E.N. Loubnin, A.V. Simakin, G.A. Shafeev: Appl.Phys. A 76, 413 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    C. Wu, C.H. Crouch, L. Zhao, J.E. Carey, R. Younkin, J.A. Levinson, E. Mazur, R.M. Farelli, P. Gothoskar, A. Karger: Appl. Phys. Lett. 78, 1850 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    D. Starikov, C. Boney, R. Pillai, A. Bensaoula, G.A. Shafeev, A.V. Simakin: Infrared Phys. Technol. 45(3), 159 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A. Bensaoula
    • 1
  • C. Boney
    • 1
  • R. Pillai
    • 1
  • G.A. Shafeev
    • 2
    Email author
  • A.V. Simakin
    • 2
  • D. Starikov
    • 1
  1. 1.Texas Center for Superconductivity and Advanced MaterialsUniversity of HoustonHoustonUSA
  2. 2.Wave Research CenterGeneral Physics Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations