Skip to main content
Log in

Nanometric size control and treatment of historic paper manuscript and prints with laser light at 157 nm

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser cleaning of historic paper infected by foxing is far more effective at 157 nm than in other laser wavelengths because at 157 nm localized photo-dissociation of organic matter is taking place at low laser energy. In addition spatial control over exposed areas with resolution better than 100 nm is possible at this wavelength. In order to optimize the methods of laser cleaning of historic paper, foxing ablation experiments at 157 nm indicate that infected paper areas can be removed with controllable spatial resolution in the nanometer scale. In addition foxing samples were investigated by scanning electron microscopy and X-ray analysis. It was found that biological activity was present on paper areas containing traces of iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Cefalas, E. Sarantopoulou, Z. Kollia: Appl. Phys. A 73, 571 (2001)

    Article  ADS  Google Scholar 

  2. E. Sarantopoulou, Z. Samardzija, S. Kobe, Z. Kollia, A.C. Cefalas: Appl. Surf. Sci. 208209, 311 (2003)

  3. R.J. Koestler, J. Vedral: Intern. Biodet. 28, 229 (1991)

    Article  Google Scholar 

  4. Y. Bashan, R. Lifshitz: Sust. Appl. Microbiol. 5, 564 (1984)

    Article  Google Scholar 

  5. E. Ioakimoglou, S. Boyatzis, P. Argitis, A. Fostiridou, K. Papapanagiotou, N. Yannovits: Chem. Mater. 11, 2013 (1999)

    Article  Google Scholar 

  6. R.E. Press: Int. Biodent. Bull. 12, 27 (1976)

    Google Scholar 

  7. H.J. Plenderleith, A.E. Werner: The conservation of antiqueties and works of art 2nd edn. (Oxford University Press, London 1971)

  8. D. Hunter: Papermaking, 2nd edn. (Pleides, London 1947)

  9. G.G. Meynell, R.J. Newsam: Nature 274, 466 (1978)

    Article  ADS  Google Scholar 

  10. M.L.E. Florian: Studies in Conservation 16, 65 (1996)

    Google Scholar 

  11. G.G. Meynell, R.J. Newsam: Nature 27, 4466 (1978)

    Google Scholar 

  12. L. Nol, Y. Henis, R.G. Kenneth: Int. Biodeterioation Bull. 19, 19 (1983)

    Google Scholar 

  13. T. Ohtsuki, N. Yamada, H. Kobori, M.J. Osumi: Electron Microsc. 41, 270 (1992)

    Google Scholar 

  14. N.N. Saprykina, V.I. Kobyakova, A.L. Shakhmin: Russ. J. Appl. Chem. 72, 2188 (1999)

    Google Scholar 

  15. N.N. Saprykina, V.I. Kobyakova, A.L. Shakhmin: Russ. J. App. Chem. 72, 2188 (1999)

    Google Scholar 

  16. J. Caverhill, J. Stanley, B. Singer, I. Latimer: Restaurator 20, 57 (1999)

    Google Scholar 

  17. J. Kolar, M. Strlic, S. Pentzien, W. Kautek: Appl. Phys. A 71, 87 (2000)

    ADS  Google Scholar 

  18. H.M. Szczepanowska, W.R. Moonmaw: J. Am. Inst. Conserv. 33, 25 (1994)

    Article  Google Scholar 

  19. J. Caverhill, I. Latimer, B. Singer: The Conservator 20, 65 (1996)

    Article  Google Scholar 

  20. A.C. Cefalas, N. Vassilopoulos, Z. Kollia, E. Sarantopoulou, C. Skordoulis: Appl. Phys. A 70, 21 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kobe.

Additional information

PACS

87.50.Hj; 42.62.-b; 87.15.Mi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollia, Z., Sarantopoulou, E., Cefalas, A. et al. Nanometric size control and treatment of historic paper manuscript and prints with laser light at 157 nm. Appl. Phys. A 79, 379–382 (2004). https://doi.org/10.1007/s00339-004-2539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2539-8

Keywords

Navigation