Skip to main content
Log in

Acoustic substrate expansion in modelling dry laser cleaning of low absorbing substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Acoustic expressions have been derived for the thermal expansion of substrate surfaces due to irradiation by an exponential laser pulse. The result of acoustic effects on three substrates (silicon, glass and silica) with different absorptions has been calculated.

It has been shown that for substrates having relatively low absorptions, like silica and glass, acoustic considerations substantially reduce thermal expansion of the substrate caused by irradiation by nanosecond laser pulses relative to a quasi-static expansion model. In particular, the expansion of the substrate occurs over a much longer time frame than when the quasi-static approximation holds. Consequently, acceleration of the substrate surface is greatly reduced and laser cleaning threshold fluences for particle removal are increased.

The predictions of the model of Arnold et al. when developed for acoustic considerations give reasonable agreement with experimentally found threshold fluences for alumina particles on silica and glass substrates although it underestimates the ratio of the threshold cleaning fluences of silica and glass. This could be due to the model underestimating the contribution of surface expansion to the laser cleaning process. The influence of multiple reflections in the substrate and departure from one dimensionality in the heat conduction on the threshold fluence was found to be insignificant. Thermal contact between the particle and the substrate was also found to have little effect on laser cleaning threshold fluences. Another mechanism that may enhance surface expansion is the 3D focussing of radiation by the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Kane, A.J. Fernandes, D.R. Halfpenny: In: Laser Cleaning, ed. by B. Luk’yanchuk (World Scientific, New Jersey, London 2002), Chapt. 4, pp. 181–228

  2. D.R. Halfpenny, D.M. Kane: J. Appl. Phys. 86, 6641 (1999)

    Article  ADS  Google Scholar 

  3. D.M. Kane, A.J. Fernandes: Proc. SPIE 4426, 334 (2001)

    Article  ADS  Google Scholar 

  4. A.J. Fernandes, D.M. Kane: Proc. SPIE 4426, 290 (2001)

    Article  ADS  Google Scholar 

  5. V. Dobler et al.: Appl. Phys. A 69, 335 (1999)

    Article  ADS  Google Scholar 

  6. Y.F. Lu et al.: Appl. Phys. A 65, 9 (1997)

    Article  ADS  Google Scholar 

  7. Y.F. Lu, Y.W. Zheng, W.D. Song: Appl. Phys. A 68, 569 (1999)

    Article  ADS  Google Scholar 

  8. Y.F. Lu et al.: J. Appl. Phys. 80, 499 (1996)

    Article  ADS  Google Scholar 

  9. A.A. Kolomenskii, H.A. Schuessler, V.G. Mikhalevich, A.A. Maznev: J. Appl. Phys. 84, 2404 (1998)

    Article  ADS  Google Scholar 

  10. Y.F. Lu, Y.W. Zheng, W.D. Song: J. Appl. Phys. 87, 549 (2000)

    Article  ADS  Google Scholar 

  11. G. Vereecke, E. Rohr, M.M. Heyns: J. Appl. Phys. 85, 3837 (1999)

    Article  ADS  Google Scholar 

  12. B.S. Luk’yanchuk, Y.W. Zheng, Y.F. Lu: RIKEN Review 43, 28 (2002)

    Google Scholar 

  13. N. Arnold et al.: Proc. SPIE 4426, 340 (2002)

    Article  ADS  Google Scholar 

  14. N. Arnold: In: Laser Cleaning, ed. by B.S. Luk’yanchuk (World Scientific, New Jersey, London 2002) Chapt. 2, pp. 51–102

  15. N. Arnold: Appl. Surf. Sci. 197198, 904 (2002)

  16. S. Pleasants, D.M. Kane: J. Appl. Phys. 93, 8862 (2002)

    Article  ADS  Google Scholar 

  17. D. Bauerle: Laser Processing and Chemistry, 3rd edn. (Springer-Verlag, Berlin 2000)

  18. A.A. Maznev, J. Hohlfeld, J. Gudde: J. Appl. Phys. 82, 5082 (1997)

    Article  ADS  Google Scholar 

  19. D.R. Halfpenny, Ph.D. thesis: Macquarie University (1999)

  20. M.E. Innocenzi et al.: J. Appl. Phys. 67, 7542 (1990)

    Article  ADS  Google Scholar 

  21. C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light from Small Particles (Wiley, New York 1998)

  22. N. Arnold: Appl. Surf. Sci. 208209, 15 (2003)

  23. B.S. Luk’yanchuk, Y.W. Zheng, Y.F. Lu: Proc. SPIE 4065, 576 (2000)

    Article  ADS  Google Scholar 

  24. B.S. Luk’yanchuk et al.: In: Laser Cleaning, ed. by B.S. Luk’yanchuk (World Scientific, New Jersey, London 2002) Chapt. 3, pp. 103–178

  25. D.N. Nikogosyan: Properties of Optical and Laser-Related Materials – a Handbook (Wiley, New York 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pleasants.

Additional information

PACS

42.62.Cf; 81.65.Cf; 42.55.Lt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleasants, S., Arnold, N. & Kane, D. Acoustic substrate expansion in modelling dry laser cleaning of low absorbing substrates. Appl. Phys. A 79, 507–514 (2004). https://doi.org/10.1007/s00339-003-2480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2480-2

Keywords

Navigation