Skip to main content
Log in

Tuning vertically stacked InAs/GaAs quantum dot properties under spacer thickness effects for 1.3 μm emission

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Coherent InAs islands separated by GaAs spacer (d) layers are shown to exhibit self-organized growth along the vertical direction. A vertically stacked layer structure is useful for controlling the size distribution of quantum dots. The thickness of the GaAs spacer has been varied to study its influence on the structural and optical properties. The structural and optical properties of multilayer InAs/GaAs quantum dots (QDs) have been investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and photoluminescence (PL) measurements. The PL full width at half maximum (FWHM), reflecting the size distribution of the QDs, was found to reach a minimum for an inter-dots GaAs spacer layer thickness of 30 monolayers (ML). For the optimized structure, the TEM image shows that multilayer QDs align vertically in stacks with no observation of apparent structural defects. Furthermore, AFM images showed an improvement of the size uniformity of the QDs in the last layer of QDs with respect to the first one. The effect of growth interruption on the optical properties of the optimized sample (E30) was investigated by PL. The observed red shift is attributed to the evolution of the InAs islands during the growth interruption. We show the possibility of increasing the size of the QDs approaching the strategically important 1.3 μm wavelength range (at room temperature) with growth interruption after InAs QD deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, O. Vatel: Appl. Phys. Lett. 64, 196 (1994)

    Article  ADS  Google Scholar 

  2. N.P. Kobayashi, T.R. Ramachandran, P. Chen, A. Madhukar: Appl. Phys. Lett. 68, 3299 (1996)

    Article  ADS  Google Scholar 

  3. N.N. Ledentsov et al.: Phys. Rev. B 54, 8743 (1996)

    Article  ADS  Google Scholar 

  4. N. Yokoyama, S. Muto, K. Imamura, M. Takatsu, T. Mori, Y. Sugiyama, Y. Sakuma, H. Nakao, Adachihara: Solid -State Electron. 40, 505 (1996)

    Article  ADS  Google Scholar 

  5. S. Hinooda, S. Frechengues, B. Lambert, S. Loualiche, M. Paillard,X. Marie, T. Amand: Appl. Phys. Lett. 75, 3530 (1999)

    Article  ADS  Google Scholar 

  6. D. Leonard, K. Pond, P.M. Petroff: Phys. Rev. B 50, 11687 (1994)

    Article  ADS  Google Scholar 

  7. J.M. Gerard: Appl. Phys. Lett. 61, 2096 (1992)

    Article  ADS  Google Scholar 

  8. E.C. Le Ru, A.J. Bennett, C. Roberts, R. Murray: J. Appl. Phys. 91, 1365 (2002)

    Article  ADS  Google Scholar 

  9. J. Tersoff, C. Teichert, M.G. Lagally: Phys. Rev. Lett. 76, 1675 (1996)

    Article  ADS  Google Scholar 

  10. H. Lee, R. Lowe-Webb, W. Yang, P.C. Sercel: Appl. Phys. Lett. 72, 812 (1998)

    Article  ADS  Google Scholar 

  11. A. Darhuber et al.: Appl. Phys. Lett. 70, 955 (1997)

    Article  ADS  Google Scholar 

  12. Q. Xie, P. Chen, A. Madhudar: Appl. Phys. Lett. 65, 2051 (1994)

    Article  ADS  Google Scholar 

  13. Q. Xie, A. Madhukar, P. Chen, P. Kobayashi: Phys. Rev. Lett. 75, 2542 (1995)

    Article  ADS  Google Scholar 

  14. R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, A. Hoffmann, A. Madhukar, D. Bimberg: Phys. Rev. B 57, 9050 (1998)

    Article  ADS  Google Scholar 

  15. P. Fregeri, A. Bosacchi, S. Franchi, P. Allegri, V. Avanzini: J. Cryst. Growth 201/202, 1136 (1999)

    Google Scholar 

  16. E. Petitprez, N.T. Moshegov, J.E. Marega, A. Mazel, D. Dorignac, R. Fourmeaux: J. Vac. Sci. Technol. B 18, 1493 (2000)

    Article  Google Scholar 

  17. M. Hjiri, F. Hassen, H. Maaref: Mat. Sci. Eng. B 88, 255 (2002)

    Article  Google Scholar 

  18. G. Park, O.B. Shchekin, D.L. Huffaker, D.G. Deppe: Appl. Phys. Lett. 73, 3351 (1998)

    Article  ADS  Google Scholar 

  19. H.S. Lee, et al: J. Cryst. Growth 241, 63 (2002)

    Article  ADS  Google Scholar 

  20. B. Alen et al: Physica E 17, 174 (2003)

    Article  ADS  Google Scholar 

  21. M. Gendry et al: Physica E 17, 505 (2003)

    Article  ADS  Google Scholar 

  22. B. Lita, R.S. Goldmann, J.D. Phillips, P.K. Bhattacharya: Appl. Phys. Lett. 74, 2824 (1999)

    Article  ADS  Google Scholar 

  23. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, A. Madhudar: Appl. Phys. Lett. 73, 1841 (1998)

    Article  ADS  Google Scholar 

  24. E. Mateeva, P. Sutter, J.C. Beam, M.G. Lagally: Appl. Phys. Lett. 71, 3233 (1997)

    Article  ADS  Google Scholar 

  25. J.M. Gérard, J.B. Génin, J. Lefebvre, J.M. Moisson, N. Lebouché, F. Barthe: J. Cryst. Growth 150, 351 (1995)

    Article  ADS  Google Scholar 

  26. J.S. Kim et al: Appl. Phys. Lett. 80, 4714 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Maaref.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouzaiene, L., Ilahi, B., Sfaxi, L. et al. Tuning vertically stacked InAs/GaAs quantum dot properties under spacer thickness effects for 1.3 μm emission. Appl. Phys. A 79, 587–591 (2004). https://doi.org/10.1007/s00339-003-2455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2455-3

Keywords

Navigation