Skip to main content
Log in

Comparative study of hydrofullerides C 60 H x synthesized by direct and catalytic hydrogenation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hydrofullerides with hydrogen content up to 5 wt. % were obtained by direct and catalytic reactions with H2 gas. Hydrogen content was monitored ‘in situ’ using a gravimetric system, and verified by chemical analysis ‘ex situ’. It was found that pure C60 reacts rapidly when exposed to H2 gas at 673 K and 50–100 bar. Gravimetric study of this reaction showed that hydrogenation is saturated at about 5 wt. % of hydrogen. The mass of the sample goes through a maximum and with a longer reaction time its weight starts to decrease. This proves that hydrofullerides with high hydrogen content are not stable and strong hydrogenation results in the collapse of C60 molecules. XRD studies showed that samples prepared by direct hydrogenation without a catalyst retain an original fcc structure with an increase of the cell parameter a up to 15.1 Å. Catalytic hydrogenation of C60 with H2 gas results in a decrease of the reaction temperature and formation of hydrofullerides with different types of crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.O. Loufty, E.M. Wexler: Procs. of 2001 DOE Hydrogen Prog. Rev. NREL/CP-570-30535

  2. B.P. Tarasov, Y.M. Shul’ga, V.N. Fokina, V.N. Vasilets, N.Y. Shul’ga, D.V. Schur, V.A. Yartys: J. Alloys and Compounds 314, 296 (2001)

    Article  Google Scholar 

  3. Y.M. Shul’ga, B.P. Tarasov, V.N. Fokin, V.M. Martynenko, D.V. Schur, G.A. Volkov, V.I. Rubtsov, G.A. Krasochka, N.V. Chapusheva, W. Shevchenko: Carbon 41, 1365 (2003)

    Article  Google Scholar 

  4. A.D. Darwish, A.K. Abdul-Sada, G.J. Langley, H.W. Kroto, R. Taylor, D.R.M. Walton: Synth.Metals 77, 303 (1996)

    Article  Google Scholar 

  5. C. Ruchardt, M. Gerst, J. Ebenhoch, H.D. Beckhaus, E.E.B. Campbell, R. Tellgmann, H. Schwarz, T. Weiske, S. Pitter: Angew. Chem. 105, 609 (1993)

    Article  Google Scholar 

  6. A.I. Kolesnikov, V.E. Antonov, I.O. Bashkin, G. Grosse, A.P. Moravsky, A.Y. Muzychka, E.G. Ponyatovsky, F.E. Wagner: J. Phys. Condens. Matter 9, 2831 (1997)

    Article  ADS  Google Scholar 

  7. Y.M. Shul’ga, B.P. Tarasov, V.N. Fokin, N.Y. Shul’ga, V.N. Vasilets: Fiz. Tv. Tela 41, 1520 (1999)

    Google Scholar 

  8. A.V. Okotrub, L.G. Bulusheva, I.P. Acing, A.S. Lobach, Y.M. Shulga: J. Phys. Chem. 103, 716 (1999)

    Article  Google Scholar 

  9. A.D. Darwish, A.K. Abdul-Sada, G.J. Langley, H.W. Kroto, R. Taylor, D.R.M. Walton: Chem. Soc., Perkin Trans. 2, 2359 (1995)

    Article  Google Scholar 

  10. K. Balasubramanian: Am. Chem. Soc. 114, 7300 (1992)

    Article  Google Scholar 

  11. V.N. Bezmelnitsyn, V.P. Glazkov, V.P. Zhukov, V.A. Somenkov, S.S. Shilstein: In: The 4th Biennial International Workshop of Russia Clusters (Abstracts of Reports). St. Petersburg, 1999, p. 71

  12. W. Kockelmann: ISIS exper. rep., Rutherford Appleton Lab., (2000)

  13. L.E. Halle, D.R. McKenzie, M.I. Attalla, A.M. Vassallo, R.L. Davis, J.B. Dunlop, D.J.H. Cockayne: J. Phys. Chem. 97, 5741 (1993)

    Article  Google Scholar 

  14. V.E. Antonov, I.O. Bashkin, S.S. Khasanov, A.P. Moravsky, Y.G. Morozov, Y.M. Shulga, Y.A. Ossipyan, E.G. Ponyatovsky: J. Alloys Compd. 330332, 365 (2002)

  15. A. Rathna, J. Chandrasekhar: Chem. Phys. Lett. 206, 217 (1993)

    Article  ADS  Google Scholar 

  16. M.I. Attala, A.M. Vassalo, B.H. Tattam, J.V. Hanna: J. Phys. Chem. 97, 6329 (1993)

    Article  Google Scholar 

  17. R. Bini, J. Ebenhoch, M. Fanti, P.W. Fowler, S. Leach, G. Orlandi, C. Ruchardt, J.P.B. Sandall, F. Zerbetto: Chem. Phys. 232, 75 (1998)

    Article  ADS  Google Scholar 

  18. L.G. Bulisheva, A.V. Okotrub, A.V. Antich, A.S. Lobach: J. Mol. Structure 562, 119 (2001)

    Article  ADS  Google Scholar 

  19. B.P. Tarasov, V.N. Fokin, E.E. Fokina, Z.A. Rumynskaya, L.S. Volkova, A.P. Moravskii, Y.M. Shul’ga: Russ. J. Gen. Chem. 68, 1515 (1998)

    Google Scholar 

  20. R. Tycko, R.C. Haddon, G. Dabbagh, S.H. Glarum, D.C. Douglass, A.M. Mujse: J. Phys. Chem. 95, 518 (1991)

    Article  Google Scholar 

  21. P.A. Dorozko, A.S. Lobach, A.A. Popov, V.M. Senyavin, M.V. Korobov: Chem. Phys. Lett. 336, 39 (2001)

    Article  ADS  Google Scholar 

  22. J.E. Fischer, P.A. Heiney, A.B. Smith: Acc. Chem. Res. 25, 112 (1992)

    Article  Google Scholar 

  23. W.I.F. David, R.M. Ibberson, J.C. Matthewman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, D.R.M. Walton: Nature 353, 147 (1991)

    Article  ADS  Google Scholar 

  24. P.A. Heiney, G.B.M. Vaughan, J.E. Fischer, N. Coustel, D.E. Cox, J.R.D. Copley, D.A. Neumann, W.A. Kamitakahara, K.M. Creegan, D.M. Cox, J.P. McCauley, Jr., A.B. Smith III: Phys. Rev. B 45, 4544 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Talyzin.

Additional information

PACS

61.48.+c; 61.10.Nz; 81.05.Tp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talyzin, A., Shulga, Y. & Jacob, A. Comparative study of hydrofullerides C 60 H x synthesized by direct and catalytic hydrogenation. Appl. Phys. A 78, 1005–1010 (2004). https://doi.org/10.1007/s00339-003-2422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2422-z

Keywords

Navigation