Skip to main content

Thermal evaporation synthesis of zinc oxide nanowires

Abstract

High quality ZnO nanowires were synthesized at high temperature without using heterogenous catalysts. The nanowires had a uniform prismatic shape and were grown in a cacti-like morphology. Characterizations of the products by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy showed that the ZnO nanowires were single crystalline and of high purity. An intensive exciton emission was observed around 3.25 eV from the ZnO nanowires at room temperature. The growth mechanism was discussed based on the experimental conditions and the ZnO crystal growth habits. This growth method can be used to prepare other metal oxide nanowires.

This is a preview of subscription content, access via your institution.

References

  1. Y. Cui, C.M. Lieber: Science 291, 851 (2001)

    Article  Google Scholar 

  2. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber: Nature 409, 66 (2001)

    Article  Google Scholar 

  3. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber: Nature 415, 616 (2002)

    Google Scholar 

  4. M.S. Dresselhaus, G. Dresselhaus, P. Avouris: Carbon nanotubes: synthesis, structure, properties, and applications (113, Springer, Berlin, NY 2001)

  5. A.M. Morales, C.M. Lieber: Science 279, 208 (1998)

    Article  Google Scholar 

  6. R.S. Wager, W.C. Ellis: Appl. Phys. Lett. 4, 89 (1964)

    MATH  Google Scholar 

  7. M. Ristov, G. Sinadinovski, I. Grozdanov, M. Mitreski: Thin Solid Films 149, 65 (1987)

    Google Scholar 

  8. D.S. Ginley, C. Bright: Mater. Res. Bull. 25, 15 (2000)

    Google Scholar 

  9. A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, P.Z.K. Tang, G.K.L. Wong, Y. Segawa: Mater. Sci. Eng. B 54, 24 (1998).

    Google Scholar 

  10. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa: Appl. Phys. Lett. 72, 3270 (1998)

    Article  Google Scholar 

  11. A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink: J. Lumin. 8789, 454 (2000)

    Google Scholar 

  12. E.M. Wong, P.C. Secrson: Appl. Phys. Lett. 74, 2939 (1999)

    Article  Google Scholar 

  13. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng: Appl. Phys Lett. 78, 407 (2001)

    Google Scholar 

  14. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang: Science 292, 1897 (2001)

    Article  Google Scholar 

  15. G.V. Samsonov: The Oxide handbook (150, NY IFI/Plenum 1982)

  16. W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin: J. Crystal Growth 203, 186 (1999)

    Google Scholar 

  17. Y. Chen, D. Bagnall, T. Yao: Mater. Sci. Eng. B 75, 190 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.P. Yu.

Additional information

PACS

61.46.+w; 81.16.-c; 81.07.De, 81.05.Hd

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xing, Y., Xi, Z., Zhang, X. et al. Thermal evaporation synthesis of zinc oxide nanowires. Appl. Phys. A 80, 1527–1530 (2005). https://doi.org/10.1007/s00339-003-2388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2388-x

Keywords

  • Transmission Electron Microscopy
  • Metal Oxide
  • Heterogenous Catalyst
  • Growth Habit
  • Thermal Evaporation