Skip to main content
Log in

Effects of catalysts on the internal structures of carbon nanotubes and corresponding electron field-emission properties

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using a chemical vapor deposition (CVD) method, multi-walled carbon nanotubes with uniform diameters of approximately 10 nm were synthesized on silicon substrates by the decomposition of acetylene using Fe, Co and Ni as the catalysts. Catalyst effects on the internal structures of the carbon nanotubes were evident in the Fe, Co and Ni catalyzed nanotubes. Although these nanotubes demonstrated similar morphologies, due to the variety of internal structures, the nanotubes synthesized from different catalysts demonstrated various electron field-emission characteristics including turn-on field, threshold field and field enhancement factor. Compared with carbon nanotubes from Ni catalyst, nanotubes from Fe and Co with the same diameters have better field-emission properties. Graphite layers in nanotubes from Fe and Co are much straighter and more parallel to the tube axis with fewer defects. For instance, the turn-on field and threshold field for nanotubes from Ni are 5 V/μm and 9 V/μm, respectively. These electric fields are much higher than those for nanotubes from Fe, which are 0.35 V/μm and 2.8 V/μm, respectively. This could be due to the effect of catalysts on the work function of nanotubes, since the catalyst particle usually terminates the free end of the nanotube, and the influence of internal structure on electron transportation along the nanotube axis. Therefore, this study suggests that besides a small diameter, good graphitization (crystallization) is an important prerequisite for a good carbon nanotube emitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima: Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. W.A. de Heer, A. Châtelain, D. Ugarte: Science 270, 1179 (1995)

    Article  ADS  Google Scholar 

  3. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley: Science 269, 1550 (1995)

    Article  ADS  Google Scholar 

  4. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim: Appl. Phys. Lett. 75, 3129 (1999)

    Article  ADS  Google Scholar 

  5. N. Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp: Nature 420, 393 (2002)

    Article  ADS  Google Scholar 

  6. J. Jiao, L.F. Dong, D.W. Tuggle, C.L. Mosher, S. Foxley, J. Tawdekar: Mat. Res. Soc. Symp. Proc. 706, 113 (2002)

    Google Scholar 

  7. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai: Science 283, 512 (1999)

    Article  ADS  Google Scholar 

  8. L.F. Dong, J. Jiao, C.L. Mosher, S. Foxley: Mat. Res. Soc. Symp. Proc. 728, 121 (2002)

    Google Scholar 

  9. J. Jiao, L.F. Dong, S. Foxley, C.L. Mosher, D.W. Tuggle: Microsc. Microanal. 9, (2003)

  10. J. Jiao, S. Seraphin: Chem. Phys. Lett. 249, 92 (1996)

    Article  ADS  Google Scholar 

  11. J. Jiao, P.E. Nolan, S. Seraphin, A.H. Cutler, D.C. Lynch: J. Electrochem. Soc. 143, 932 (1996)

    Article  Google Scholar 

  12. Z.P. Huang, D.Z. Wang, J.G. Wen, M. Sennett, H. Gibson, Z.F. Ren: Appl. Phys. A 74, 387 (2002)

    Article  ADS  Google Scholar 

  13. W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin: Appl. Phys. Lett. 75, 873 (1999)

    Article  ADS  Google Scholar 

  14. J.M. Bonard, J.P. Salvetat, T. Stöckli, L. Forró, A. Châtelain: Appl. Phys. A 69, 245 (1999)

    Article  ADS  Google Scholar 

  15. M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund: Appl. Phys. A 73, 409 (2001)

    Article  ADS  Google Scholar 

  16. M. Sveningsson, M. Jönsson, O.A. Nerushev, F. Rohmund, E.E.B. Campbell: Appl. Phys. Lett. 81, 1095 (2002)

    Article  ADS  Google Scholar 

  17. Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang: Chem. Phys. Lett. 299, 97 (1999)

    Article  ADS  Google Scholar 

  18. Z.W. Pan, H.G. Zhu, Z.T. Zhang, H.J. Im, S. Dai, D.B. Beach, D.H. Lowndes: Chem. Phys. Lett. 371, 433 (2003)

    Article  ADS  Google Scholar 

  19. L.F. Dong, J. Jiao, S. Foxley, C.L. Mosher, D.W. Tuggle: J. Nanosci. Nanotech. 2, 155 (2002)

    Article  Google Scholar 

  20. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy: Science 265, 635 (1994)

    Article  ADS  Google Scholar 

  21. V.V. Zhirnov, C. Lizzul-Rinne, G.J. Wojak, R.C. Sanwald, J.J. Hren:J. Vac. Sci. Technol. B 19, 87 (2001)

    Article  Google Scholar 

  22. L. Nilsson, O. Groening, P. Groening, O. Kuettel, L. Schlapbach:J. Appl. Phys. 90, 768 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Modinos: Field, Thermionic and Secondary Electron Emission Spectroscopy (Plenum Press, New York 1984)

  24. R.H. Fowler, L.W. Nordheim: Proc. R. Soc. London Ser. A 119, 173 (1928)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jiao.

Additional information

PACS

79.70.+q; 68.37.Lp; 81.07.De

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, L., Jiao, J., Pan, C. et al. Effects of catalysts on the internal structures of carbon nanotubes and corresponding electron field-emission properties. Appl. Phys. A 78, 9–14 (2004). https://doi.org/10.1007/s00339-003-2295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2295-1

Keywords

Navigation