Skip to main content
Log in

Large-scale synthesis of ZnO nanowires using a low-temperature chemical route and their photoluminescence properties

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Single-crystalline zinc oxide (ZnO) nanowires were synthesized from zinc powder and H2O through a simple chemical route at 730 °C in Ar atmosphere. The potential exists for bulk synthesis of ZnO nanowires at temperatures significantly less than the 200–300 °C of thermal evaporation methods reported formerly. Scanning electron microscopy and transmission electron microscopy observations reveal that the ZnO nanowires are structurally uniform, have lengths up to several hundreds of micrometers and diameters of about 40–60 nm and crystallize in a hexagonal structure. The growth of ZnO nanowires is controlled by the vapor–solid crystal-growth mechanism. Photoluminescence measurements show that the ZnO nanowires have a strong near-band ultraviolet emission at 380 nm and a green light emission at 520 nm caused by oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Hu, T.W. Odom, C.M. Lieber: Acc. Chem. Res. 32, 435 (1999)

    Article  Google Scholar 

  2. P. Scheier, B. Marsen, M. Lonfat, W.D. Schneider, K. Sattler: Surf. Sci. 458, 113 (2000)

    Article  ADS  Google Scholar 

  3. W. Han, S. Fan, Q. Li, Y. Hu: Science 277, 1287 (1997)

    Google Scholar 

  4. C.-H. Kiang, J.-S. Choi, T.T. Tran, A.D. Bacher: J. Phys. Chem. B 103, 7449 (1999)

    Article  Google Scholar 

  5. A.M. Morales, C.M. Lieber: Science 279, 208 (1998)

  6. Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee: Appl. Phys. Lett. 72, 1835 (1998)

    Article  ADS  Google Scholar 

  7. Y. Wu, P. Yang: Chem. Mater. 12, 605 (2000)

    Article  Google Scholar 

  8. X. Duan, C.M. Lieber: Adv. Mater. 12, 298 (2000)

    Article  Google Scholar 

  9. Z.W. Pan, H.-L. Lai, F.C.K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie: Adv. Mater. 12, 1186 (2000)

  10. Z.L. Wang, Z.R. Dai, R.P. Gao, Z.G. Bai: Appl. Phys. Lett. 77, 3349 (2000)

    Article  ADS  Google Scholar 

  11. H.J. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber: Nature 375, 769 (1995)

    Article  ADS  Google Scholar 

  12. X.F. Duang, C.M. Lieber: J. Am. Chem. Soc. 122, 188 (2000)

    Article  Google Scholar 

  13. W.Q. Han, Sh. Fan, Q. Li, B. Gu: Appl. Phys. Lett. 71, 2271 (1997)

  14. X.F. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber: Nature 409, 66 (2001)

    Article  ADS  Google Scholar 

  15. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, S.T. Lee: Appl. Phys. Lett. 78, 3304 (2001)

    Article  ADS  Google Scholar 

  16. M.K. Sunkara, S. Sharma, R. Miranda: Appl. Phys. Lett. 79, 1546 (2001)

    Article  ADS  Google Scholar 

  17. Y.Y. Wu, P.D. Yang: Chem. Mater. 12, 605 (2000)

    Article  Google Scholar 

  18. Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, X.Z. Gai, Q.L. Hang, G.C. Xiong, S.Q. Feng: Chem. Phys. Lett. 303, 311 (1999)

    Article  ADS  Google Scholar 

  19. C.H. Liang, G.W. Meng, G.Z. Wang, L.D. Zhang: Appl. Phys. Lett. 78, 3202 (2001)

    Article  ADS  Google Scholar 

  20. W.Z. Wang, C.K. Xu, G.H. Wang, Y.K. Liu, C.L. Zheng: J. Appl. Phys. 92, 2704 (2002)

    Google Scholar 

  21. P. Yang, C.M. Lieber: Science 273, 1836 (1996)

    Google Scholar 

  22. M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang: Adv. Mater. 13, 113 (2001)

    Article  Google Scholar 

  23. D.C. Look: Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  24. L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist: Chem. Mater. 13, 4386 (2001)

    Google Scholar 

  25. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa: Appl. Phys. Lett. 72, 3270 (1998)

    Article  ADS  Google Scholar 

  26. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto: Appl. Phys. Lett. 70, 2230 (1997)

    Article  ADS  Google Scholar 

  27. H. Cao, J.Y. Xu, E.W. Seeling, R.P.H. Chang: Appl. Phys. Lett. 76, 2997 (2000)

    Article  ADS  Google Scholar 

  28. S.D. Sharma, S.C. Kashyap: J. Appl. Phys. 42, 5302 (1971)

    Article  ADS  Google Scholar 

  29. Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp: Appl. Phys. Lett. 76, 2011 (2000)

  30. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang: Science 292, 1897 (2001)

    ADS  Google Scholar 

  31. A. Zeuner, H. Alves, D.M. Hofmann, B.K. Meyer, M. Heuken, A. Krost: Appl. Phys. Lett. 80, 2078 (2002)

    Article  ADS  Google Scholar 

  32. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng: Appl. Phys. Lett. 78, 407 (2001)

    Article  ADS  Google Scholar 

  33. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto: Appl. Phys. Lett. 73, 1038 (1998)

    Article  ADS  Google Scholar 

  34. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Goto, T. Yao: J. Cryst. Growth 185, 269 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.Y. Geng.

Additional information

PACS

81.05.Ys; 78.55.Et

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, B., Xie, T., Peng, X. et al. Large-scale synthesis of ZnO nanowires using a low-temperature chemical route and their photoluminescence properties. Appl Phys A 77, 363–366 (2003). https://doi.org/10.1007/s00339-003-2167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2167-8

Keywords

Navigation