Skip to main content
Log in

Deposition of thin polytetrafluoroethylene (PTFE) films using fundamental pulses of a Nd3+: YAG laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pulsed laser deposition of PTFE was carried out using a 1064-nm laser. Two different pulse regimes were examined to determine their effectiveness in causing deposition. The first of these consisted of a 20-ns Gaussian pulse, while the second was a pulse train comprising twenty 1-μs pulses with a total duration time of 100-μs. The main feature of the deposition technique that we present in this work is that ablation is induced by the efficient photothermal sensitization of graphite particles that are used to lightly dope (0.1 wt. %) a PTFE target. Both of the pulse regimes produced thin films whose infrared spectra were similar to that of PTFE. For the ns-pulse, however, carbon particles were contained in the deposited films. This behavior can be easily interpreted within the framework of photothermal ablation. For the μs pulse train, homogeneous heating is achieved due to the long thermal diffusion length, which is comparable to the average distance between the graphite particles used to dope the PTFE target. The thin PTFE films are deposited mainly by the mechanism of monomer re-polymerization. The present study demonstrates that near-infrared lasers of the μs-pulse type, which are versatile, economical and widely used in industry, are capable of the deposition of PTFE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Miller, R.F. Hugland (Eds.): Laser Ablation – Mechanisms and Applications (Springer, Berlin 1991)

  2. D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin 2000)

  3. S.G. Hansen, T.E. Robitaille: Appl. Phys. Lett. 52, 81 (1987)

    Article  ADS  Google Scholar 

  4. G.B. Blanchet, C.R. Fincher Jr., C.L. Jackson, S.I. Shar, K.H. Gardner: Science 262, 719 (1993)

    Article  ADS  Google Scholar 

  5. Y. Ueno, T. Fujii, F. Kannari: Appl. Phys. Lett. 65, 1370 (1994)

    Article  ADS  Google Scholar 

  6. S.T. Li, E. Arenholz, J. Heitz, D. Bäuerle: Appl. Surf. Sci. 125, 17 (1998)

    Article  ADS  Google Scholar 

  7. R. Schwödiauer, J. Heitz, E. Arenholz, S. Bauer-Gogonea, S. Bauer, W. Wirges: J. Polym. Sci. B Polym. Phys. 37, 2115 (1999)

    Article  ADS  Google Scholar 

  8. J. Heitz, J.T. Dickinson: Appl. Phys. A 68, 515 (1999)

    Article  ADS  Google Scholar 

  9. N. Huber, J. Heitz, D. Bäuerle, R. Schwödiauer, S. Bauer, H. Niino, A. Yabe: Appl. Phys. A 72, 581 (2001)

    Article  ADS  Google Scholar 

  10. T. Katoh, Y. Zhang: Appl. Phys. Lett. 68, 865 (1996)

    Article  ADS  Google Scholar 

  11. Y. Zhang, T. Katoh, A. Endo: J. Phys. Chem. B 104, 6212 (2000)

    Article  Google Scholar 

  12. Y. Zhang, T. Katoh, A. Endo: J. Electron. Spectrosc. 119, 247 (2001)

    Article  Google Scholar 

  13. Y. Tsuboi, M. Goto, A. Itaya: J. Appl. Phys. 85, 4189 (1999)

    Article  ADS  Google Scholar 

  14. S. Nishio, M. Okumura, S. Okada, Y. Minamimoto, Y. Taketani, A. Matsuzaki, H. Sato: J. Photopolym. Sci. Technol. 11, 347 (1998)

    Article  Google Scholar 

  15. Y. Tsuboi, A. Itaya: Appl. Phys. Lett. 74, 3896 (1999)

    Article  ADS  Google Scholar 

  16. Y. Tsuboi, H. Adachi, E. Yamamoto, A. Itaya: Jpn. J. Appl. Phys. 41, 885 (2002)

    Article  ADS  Google Scholar 

  17. H. Fujiwara, T. Hayashi, H. Fukumura, H. Masuhara: Appl. Phys. Lett. 64, 2451 (1994)

    Article  ADS  Google Scholar 

  18. S. Preuss, M. Stuke: Appl. Surf. Sci. 69, 253 (1993)

    Article  ADS  Google Scholar 

  19. F.D. Egitto, C.R. Davis: Appl. Phys. B 55, 488 (1992)

    Article  ADS  Google Scholar 

  20. F. Kokai, Y. Koga, R.B. Heimann: Appl. Surf. Sci. 9698, 261 (1996)

  21. S. Nishio, H. Sato, T. Yamabe: Appl. Phys. A 69, S711 (1999)

  22. D. Bäuerle: Appl. Surf. Sci. 186, 1 (2002)

    Article  ADS  Google Scholar 

  23. D.M. Bubb, M.R. Papantokinas, J.S. Horwitz, R.F. Huglund Jr., B. Toftmann, R.A. McGill, D.B. Chrisey: Chem. Phys. Lett. 352, 135 (2002)

    Article  ADS  Google Scholar 

  24. D.M. Bubb, J.S. Horwitz, J.H. Callehan, R.A. McGill, E.J. Houser, D.B. Chrisey, M.R. Papantonakis, R.F. Huglund Jr., M.C. Galicia, A. Vertes: J. Vac. Sci. Technol. A 19, 2698 (2001)

    Article  ADS  Google Scholar 

  25. S. Preuss, E. Matthias, M. Stuke: Appl. Phys. A 59, 79 (1994)

    Article  ADS  Google Scholar 

  26. J. Brandrup, E.H. Immergut (Eds.): Polymer Handbook (Wiley, New York 1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tsuboi.

Additional information

PACS

81.15.F; 78.20.N; 82.50; 36.20.N; 73.61.N

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuboi, Y., Kuro-Oka, T., Irie, K. et al. Deposition of thin polytetrafluoroethylene (PTFE) films using fundamental pulses of a Nd3+: YAG laser. Appl. Phys. A 78, 339–342 (2004). https://doi.org/10.1007/s00339-002-2074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-002-2074-4

Keywords

Navigation