Skip to main content
Log in

Improvement of the efficiency of phthalocyanine organic Schottky solar cells with ITO electrode treatment

  • Regular Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The devices investigated in this work consisted of an indium tin oxide (ITO)-coated glass substrate, phthalocyanine (Pc) layer and an aluminum electrode. The Schottky cell exhibits optimal performance with one ohmic and one barrier contact. The work function of the ITO film is typically around 4.5–4.8 eV, while the HOMO level of phthalocyanine films is typically around 5.2 eV. It is known that surface treatment of ITO can change its work function. We investigated various ITO surface treatments for improving the performance of phthalocyanine-based Schottky solar cells. We found that cells of ITO treated with HCl and UV ozone exhibited the best performance. Four different phthalocyanines (Pcs), namely nickel phthalocyanine (NiPc), copper phthalocyanine (CuPc), iron phthalocyanine (FePc) and cobalt phthalocyanine (CoPc) were investigated. A power conversion efficiency as high as 10% was achieved for the CuPc cell with monochromatic excitation at 632.8 nm, with a light intensity of 2.7 μW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wöhrle, L. Kreienhoop, D. Schlettwein: Phthalocyanines and Related Macrocycles in Organic Phototovoltaic Junctions’. In: Phthalocyanines, Properties and Applications, ed. by C.C. Leznoff, A.B.P. Lever (VCH Publishers Inc., New York 1996) pp.  219–284

  2. P. Peumans, V. Bulovič, S.R. Forrest: Appl. Phys. Lett. 76, 2650 (2000)

    Article  ADS  Google Scholar 

  3. J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo: Appl. Phys. Lett. 73, 729 (1998)

    Article  ADS  Google Scholar 

  4. X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo: Appl. Phys. Lett. 78, 410 (2001)

    Article  ADS  Google Scholar 

  5. N. Fujii, Y. Ohmori, K. Yoshino: IEEE Trans. Electron. Dev. 44, 1204 (1997)

    Article  ADS  Google Scholar 

  6. T. Nagasawa, K. Murakami, K. Watanabe: Mol. Cryst. Liquid Cryst. 316, 389 (1998)

    Article  Google Scholar 

  7. M.I. Newton, T.K.H. Starke, M.R. Willis, G. McHale: Sensors and Actuators B 67, 307 (2000)

  8. G. McHale, M.I. Newton, P.D. Hooper, M.R. Willis: Opt. Mater. 6, 89 (1996)

    Article  ADS  Google Scholar 

  9. R. Takeuchi, M. Takeuchi: Jpn. J. Appl. Phys. 36, L127 (1997)

  10. F.R. Fan, L.R. Faulkner: J. Chem. Phys. 69, 3334 (1978)

    Article  ADS  Google Scholar 

  11. F.R. Fan, L.R. Faulkner: J. Chem. Phys. 69, 3341 (1978)

    Article  ADS  Google Scholar 

  12. J.P. Dodelet, H.P. Pommier, M. Ringuet: J. Appl. Phys. 53, 4270 (1982)

    Article  ADS  Google Scholar 

  13. Y.L. Pan, X.D. Liao, Y.J. Wu, L.B. Chen, Y.Y. Zhao, Y.H. Shen, F.M. Li, S.Y. Shen, D.Y. Huang: Thin Solid Films 324, 209 (1998)

  14. G.A. Chamberlain, P.J. Cooney: Chem. Phys. Lett. 66, 88 (1979)

    Article  ADS  Google Scholar 

  15. R.O. Loutfy, J.H. Sharp, C.K. Hsiao, R. Ho: J. Appl. Phys. 52, 5218 (1981)

    Article  ADS  Google Scholar 

  16. R.O. Loutfy, J.H. Sharp: J. Chem. Phys. 71, 1211 (1979)

    Article  ADS  Google Scholar 

  17. A.K. Ghosh, D.L. Morel, T. Feng, R.F. Shaw, C.A. Rowe Jr.: J. Appl. Phys. 45, 230 (1974)

  18. M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettwein, S. Hiller, D. Wöhrle: Sol. Energy Mater. Sol. Cells 63, 83 (2000)

    Article  Google Scholar 

  19. C.W. Tang: Appl. Phys. Lett. 48, 183 (1986)

    Article  ADS  Google Scholar 

  20. J. Rostalski, D. Meissner: Sol. Energy Mater. Sol. Cells 61, 87 (2000)

    Article  Google Scholar 

  21. J. Rostalski, D. Meissner: Sol. Energy Mater. Sol. Cells 63, 37 (2000)

    Article  Google Scholar 

  22. P.H. Fang: J. Appl. Phys. 45, 4672 (1974)

    Article  ADS  Google Scholar 

  23. M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga: J. Luminescence 8789, 1165 (2000)

    Article  ADS  Google Scholar 

  24. J.S. Kim, M. Granström, R.H. Friend, N. Johanson, W.R. Salaneck, F. Cacialli: J. Appl. Phys. 84, 6859 (1998)

    Article  ADS  Google Scholar 

  25. F. Nüesch, E.W. Forsythe, Q.T. Le, Y. Gao, J. Rothberg: J. Appl. Phys. 87, 7973 (2000)

    Article  ADS  Google Scholar 

  26. B. Choi, H. Yoon, H.H. Lee: Appl. Phys. Lett. 76, 412 (2000)

    Article  ADS  Google Scholar 

  27. S.F. Alvarado, L. Rossi, P. Müller, W. Riess: Synthetic Metals 122, 73 (2001)

  28. T. Kimura, M. Sumimoto, S. Sakaki, H. Fujimoto, Y. Hashimoto, S. Matsuzaki: Chem. Phys. 253, 125 (2000)

    Google Scholar 

  29. H.B. Michaelson: J. Appl. Phys. 48, 4729 (1977)

    Article  ADS  Google Scholar 

  30. O. Stenzel, A. Stendal, K. Voigtsberger, C. von Borczykowski: Sol. Energy Mater. Sol. Cells 37, 337 (1995)

    Article  Google Scholar 

  31. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, D. Meissner: Sol. Energy Mater. Sol. Cells 61, 97 (2000)

    Article  Google Scholar 

  32. S.C. Dahlberg, M.E. Musser: J. Chem. Phys. 70, 5021 (1977)

    Article  ADS  Google Scholar 

  33. A.B. Djurisic, T.W. Lau, C.Y. Kwong, W.L. Guo, Y. Bai, E.H. Li, W.K. Chan: Proc. of the SPIE 4464, 273 (2002)

    Article  ADS  Google Scholar 

  34. B.H. Schechtman, W.E. Spicer: J. Mol. Spectr. 33, 28 (1970)

    Article  ADS  Google Scholar 

  35. A. Ritz, H. Lüth: Appl. Phys. A 31, 75 (1983)

    Article  ADS  Google Scholar 

  36. L. Edwards, M. Gouterman: J. Mol. Spectr. 33, 292 (1970)

    Article  ADS  Google Scholar 

  37. M. Iwan, E.E. Koch, T.C. Chiang, D.E. Eastman, F.J. Himpsel: Solid State Commun. 34, 57 (1980)

  38. A.T. Davidson: J. Chem. Phys. 77, 168 (1982)

    Article  ADS  Google Scholar 

  39. E.A. Lucia, F.D. Verderame: J. Chem. Phys. 48, 2674 (1968)

    Article  ADS  Google Scholar 

  40. J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, R. Bernardini: Thin Solid Films 146, 115 (1987)

  41. S.K. So, W.K. Choi, C.H. Cheng, L.M. Leung, C.F. Kwong: Appl. Phys. A 68, 447 (1999)

    Article  ADS  Google Scholar 

  42. K. Sugiyama, H. Ishii, Y. Ouchi, K. Seki: J. Appl. Phys. 87, 295 (2000)

    Article  ADS  Google Scholar 

  43. F. Nüesch, K. Kamaras, L. Zuppiroli: Chem. Phys. Lett. 283, 194 (1998)

    Article  ADS  Google Scholar 

  44. F. Nüesch, L.J. Rothberg, E.W. Forsythe, Q.T. Le, Y. Gao: Appl. Phys. Lett. 74, 880 (1999)

    Article  ADS  Google Scholar 

  45. Q.T. Le, E.W. Forsythe, F. Nüesch, L.J. Rothberg, L. Yan, Y. Gao: Thin Solid Films 363, 42 (2000)

  46. Q.T. Le, F. Nüesch, L.J. Rothberg, E.W. Forsythe, Y. Gao: Appl. Phys. Lett. 75, 1357 (1999)

    Article  ADS  Google Scholar 

  47. F. Li, H. Tang, J. Shinar, O. Resto, S.Z. Weisz: Appl. Phys. Lett. 70, 2741 (1997)

    Article  ADS  Google Scholar 

  48. K. Murata, S. Ito, K. Takahashi, B.M. Hoffman: Appl. Phys. Lett. 71, 674 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.B. Djurišiĉ .

Additional information

PACS

72.40.+w; 73.61.Ph

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwong , C., Djurišiĉ , A., Chui , P. et al. Improvement of the efficiency of phthalocyanine organic Schottky solar cells with ITO electrode treatment. Appl Phys A 77, 555–560 (2003). https://doi.org/10.1007/s00339-002-1493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-002-1493-6

Keywords

Navigation