Skip to main content

Advertisement

Log in

Unprecedented erosion of Mussismilia harttii, a major reef-building species in the Southwestern Atlantic, after the 2019 bleaching event

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Reefs are diverse environments because of the structural complexity provided by the tridimensional coral-built framework. However, they are sensitive environments that face multiple stressors including global warming, which triggers bleaching and mortality episodes. After death, coral skeletons are overgrown by a microbial film, which degrades and erodes the reef framework. Although erosive processes have been investigated in the Caribbean and Indo-Pacific, they remain poorly addressed for the unique Southwestern Atlantic reefs. Therefore, we investigated through field surveys of three Brazilian reefs if colonies of the endemic and regionally dominant coral Mussismilia harttii underwent erosion after the 2019 bleaching episode. We also collected corallite fragments from healthy, mildly bleached, severely bleached and dead M. harttii colonies for microcomputed tomography and densitometry analyses to assess whether microporosity and skeletal mineral density are reduced following bleaching. Our findings show that > 90% of the colonies underwent bleaching and loss of live cover was higher than 60% for all three reefs. All reefs also underwent severe erosion, with an area loss of intact colonies ranging from 33.8 to 85.2%. Furthermore, we detected higher total microporosity for dead skeletons and, together with severely bleached colonies, lower skeletal mineral density. Our results also suggest that bleaching, mortality and erosion processes are connected. These findings show that Southwestern Atlantic reefs are facing unprecedented degradation, although they are often considered climate refugia. In addition, because M. harttii is among the most important reef-builders in the region, carbonate budgets and structural complexity may face declines in the Southwestern Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarado JJ, Grassian B, Cantera-Kintz JR, Carvalho JL, Londoño-Cruz E (2016) Coral Reef Bioerosion in the Eastern Tropical Pacific. Coral Reefs of the Eastern Tropical Pacific 8:369–403

    Article  Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proceedings of the Royal Society b: Biological Sciences 276:3019–3025

    Article  PubMed  PubMed Central  Google Scholar 

  • Anthony KR (2016) Coral reefs under climate change and ocean acidification: challenges and opportunities for management and policy. Annu Rev Environ Resour 41:59–81

    Article  Google Scholar 

  • Banha TN, Capel KC, Kitahara MV, Francini-Filho RB, Francini CL, Sumida PY, Mies M (2020) Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs 39:515–521

    Article  Google Scholar 

  • Bastos AC, Moura RL, Moraes FC, Vieira LS, Braga JC, Ramalho LV, Amado-Filho GM, Magdalena UR, Webster JM (2018) Bryozoans are major modern builders of South Atlantic oddly shaped reefs. Sci Rep 8:9638

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellwood DR, Choat JH (2011) Dangerous demographics: the lack of juvenile humphead parrotfishes Bolbometopon muricatum on the Great Barrier Reef. Coral Reefs 30:549–554

    Article  Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and function on coral reefs. Ecol Lett 6:281–285

    Article  Google Scholar 

  • Bleuel J, Pennino MG, Longo GO (2021) Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming. Sci Rep 11:1–2

    Article  Google Scholar 

  • Boström-Einarsson L, Bonin MC, Munday PL, Jones GP (2014) Habitat degradation modifies the strength of interspecific competition in coral dwelling damselfishes. Ecology 95:3056–3067

    Article  Google Scholar 

  • Bozec YM, Alvarez-Filip L, Mumby PJ (2015) The dynamic of architectural complexity on coral reefs under climate chance. Glob Change Biol 1:223–235

    Article  Google Scholar 

  • Bruno JF, Sweatman H, Precht WF, Selig ER, Schutte VG (2009) Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90:1478–1484

    Article  PubMed  Google Scholar 

  • Bruno JF, Côté IM, Toth LT (2019) Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve resilience? Ann Rev Mar Sci 11:307–334

    Article  PubMed  Google Scholar 

  • Buddemeier RW, Smith SV (1988) Coral reef growth in an area of rapid rising sea level: predictions and suggestions for long-term research. Coral Reefs 7(51):56

    Google Scholar 

  • Cacciapaglia C, van Woesik R (2016) Climate-change refugia: Shading reef corals by turbidity. Glob Change Biol 22:1145–1154

    Article  Google Scholar 

  • Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371

    Google Scholar 

  • Chaves LD, Nunes JD, Sampaio CL (2010) Shallow reef fish communities of south Bahia coast, Brazil. Braz J Oceanogr 58:33–46

    Article  Google Scholar 

  • Coker DJ, Pratchett MS, Munday PL (2012) Influence of coral bleaching, coral mortality and conspecific aggression on movement and distribution of coral-dwelling fish. J Exp Mar Biol Ecol 415:62–68

    Article  Google Scholar 

  • Coni EO, Ferreira CM, Moura RL, Meirelles PM, Kaufman L, Francini-Filho RB (2013) An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environ Biol Fishes 96:45–55

    Article  Google Scholar 

  • Coral Reef Watch Satellite Monitoring and Modeled Outlooks (2022) NOAA Satellite and Information Service

  • Cornwall CE, Comeau S, Kornder NA, Perry CT, van Hooidonk R, DeCarlo TM, Pratchett MS, Anderson KD, Browne N, Carpenter R, Diaz-Pulido G, D’Olivo JP, Doo SS, Figueiredo J, Fortunato SAV, Kennedy E, Lantz CA, McCulloch MT, González-Rivero M, Schoepf V, Smithers SG, Lowe RJ (2021) Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proceedings of the National Academy of Sciences of the USA 118:e2015265118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couch CS, Burns JH, Liu G, Steward K, Gutlay TN, Eakin CM, Kosaki R (2017) Mass Coral Bleaching Due to Unpreceded Marine Heatwave in Papahānaumokuākea Marine National Monument (northwestern Hawaiian Islands) 12:1–27

    Google Scholar 

  • Davey M, Holmes G, Johnstone R (2008) High rates of nitrogen fixation (acetylene reduction) on coral skeletons following bleaching mortality. Coral Reefs 1:227–236

    Article  Google Scholar 

  • Dechnik B, Bastos AC, Vieira LS, Webster JM, Fallon S, Yokoyama Y, Nothdurft L, Sanborn K, Batista J, Moura R, Amado-Filho G (2019) Holocene reef growth in the tropical southwestern Atlantic: evidence for sea level and climate instability. Quatern Sci Rev 218:365–377

    Article  Google Scholar 

  • Dechnik B, Bastos AC, Vieira LS, Webster JM, Fallon S, Yokoyama Y, Braga JC, Pereira MA, Nothdurft L, Sanborn K, Moura RL, Amado-Filho GM (2021) Environmental controls on holocene reef development along the eastern brazilian margin. Coral Reefs 40:1321–1337

    Article  Google Scholar 

  • Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132

    Article  Google Scholar 

  • Duarte GAS, Villela HDM, Deocleciano M, Silva D, Barno A, Cardoso PM, Vilela CLS, Rosado P, Messias CSMA, Chacon MA, Santoro EP, Olmedo DB, Szpilman M, Rocha LA, Sweet M, Peixoto RS (2020) Heat waves are a major threat to turbid coral reefs in Brazil. Front Mar Sci 7:179

    Article  Google Scholar 

  • Dubinsky ZV, Stambler N (1996) Marine pollution and coral reefs. Glob Change Biol 2:511–526

    Article  Google Scholar 

  • Eakin CM (1996) Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Nino at Uva Island in the eastern Pacific. Coral Reefs 15:109–119

    Google Scholar 

  • Edinger EN, Limmon GV, Jompa J, Widjatmoko W, Heikoop JM, Risk MJ (2000) Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Mar Pollut Bull 40:404–425

    Article  CAS  Google Scholar 

  • Ferreira LC, Grillo AC, Repinaldo Filho FP, Souza FN, Longo GO (2021) Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar Biol 168:54

    Article  CAS  Google Scholar 

  • Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CEL, Gasparini JL, Brito A, Falcón JM, Bowen BW, Bernardi G (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47

    Google Scholar 

  • Fordyce AJ, Ainsworth TD, Heron SF, Leggat W (2019) Marine heatwave hotspots in coral reef environments: Physical drivers, ecophysiological outcomes, and impact upon structural complexity. Front Mar Sci 6:498

    Article  Google Scholar 

  • Garpe KC, Yahya SA, Lindahl U, Öhman MC (2006) Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar Ecol Prog Ser 315:237–247

    Article  Google Scholar 

  • Gaspar TL, Quimbayo JP, Ozekoski R, Nunes LT, Aued AW, Mendes TC, Garrido AG, Segal B (2021) Severe coral bleaching of Siderastrea stellata at the only atoll in the South Atlantic driven by sequential Marine Heatwaves. Biota Neotrop 12:21

    Google Scholar 

  • Gherardi DF, Bosence DW (2001) Composition and community structure of the coralline algal reefs from Atol das Rocas, South Atlantic, Brazil. Coral Reefs 19:205–219

    Article  Google Scholar 

  • Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol 2:495–509

    Article  Google Scholar 

  • Glynn PW, Manzello DP (2015) Bioerosion and coral reef growth: a dynamic balance. Coral reefs in the Anthropocene. Springer, Dordrecht

    Google Scholar 

  • Graham NAJ, Nash KL (2012) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 8:839–866

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RD, Greenfield P, Gomez ED, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hopley D, Smithers SG, Parnell K (2007) The geomorphology of the Great Barrier Reef: development, diversity and change. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Hughes TP, Bellwood DR, Folke CS, McCook LJ, Pandolfi JM (2007a) No-take areas, herbivory and coral reef resilience. Trends Ecol Evol 22:1–3

    Article  PubMed  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007b) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Hobbs HH, JPA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

  • ICMBio (2018) Livro vermelho da fauna brasileira ameaçada de extinção. Brasília, Brazil

  • Januchowski-Hartley FA, Graham NA, Wilson SK, Jennings S, Perry CT (2017) Drivers and predictions of coral reef carbonate budget trajectories. Proceedings of the Royal Society b: Biological Sciences 284:20162533

    Article  PubMed  PubMed Central  Google Scholar 

  • Kayanne H (2017) Validation of degree heating weeks as a coral bleaching index in the northwestern Pacific. Coral Reefs 36:63–70

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Krueger T, Hawkins TD, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK (2015) Differential coral bleaching — contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp Biochem Physiol a: Mol Integr Physiol 190:15–25

    Article  CAS  Google Scholar 

  • Laborel-Deguen F, Castro CB, Nunes F, Pires DO (2019) Recifes Brasileiros: o Legado de Laborel. Museu Nacional, Rio de Janeiro, Brazil

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    Article  CAS  PubMed  Google Scholar 

  • Lange ID, Perry CT (2019) Bleaching impacts on carbonate production in the Chagos Archipelago: influence of functional coral groups on carbonate budget trajectories. Coral Reefs 4:619–624

    Article  Google Scholar 

  • Leão ZMAN, Kikuchi RKP, Testa V (2003) Corals and coral reefs of Brazil. In: Cortés J (ed) Latin American Coral Reefs. Elsevier, Amsterdam, Netherlands, pp 9–52

    Chapter  Google Scholar 

  • Leão ZMAN, Kikuchi RKP, Oleiveira MDM, Vasconcellos V (2010) Status of eastern Brazilian coral reefs in time of climate chances. Pan-American Journal of Aquatic Science 5:224–235

    Google Scholar 

  • Leão ZMAN, Kikuchi RKP, Ferreira BP, Neves EG, Sovierzoski HH, Oliveira MD, Maida M, Correia MD, Johnsson R (2016) Brazilian coral reefs in a period of global change: A synthesis. Braz J Oceanogr 64:97–116

    Article  Google Scholar 

  • Leggat WP, Camp EF, Suggett DJ, Heron SF, Fordyce AJ, Gardner S, Deakin L, Turner M, Beeching LJ, Kuzhiumparambil U, Eakin CM, Ainsworth TD (2019) Rapid Coral Decay Is Associated with Marine Heatwave Mortality Events on Reefs. Curr Biol 16:2723–2730

    Article  Google Scholar 

  • Leiper IA, Siebeck UE, Marshal NJ, Phinn SR (2009) Coral health monitoring: linking coral colour and remote sensing techniques. Can J Remote Sens 35:276–286

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Lima AL, Zapelini C, Schiavetti A (2021) Governance of marine protected areas of the Royal Charlotte Bank, Bahia, east coast of Brazil. Ocean & Coastal Management 207:105615

    Article  Google Scholar 

  • Liu G, Heron SF, Eakin CM, Muller-Karger FE, Vega-Rodriguez M, Guild LS, De La Cour JL, Geiger EF, Skirving WJ, Burgess TF, Strong AE, Harris A, Maturi E, Ignatov A, Sapper J, Li J, Lynds S (2014) Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sensing 6:11579–11606

    Article  Google Scholar 

  • Longhini CM, Souza MF, Silva AM (2015) Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil. Estuar Coast Shelf Sci 166:13–23

    Article  CAS  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Marangoni LF, Mies M, Güth AZ, Banha TN, Inague A, Fonseca JD, Dalmolin C, Faria SC, Ferrier-Pagès C, Bianchini A (2019) Peroxynitrite generation and increased heterotrophic capacity are linked to the disruption of the coral–dinoflagellate symbiosis in a scleractinian and hydrocoral species. Microorganisms 7:426

    Article  PubMed Central  Google Scholar 

  • McManus JW, Polsenberg JF (2004) Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog Oceanogr 60:263–279

    Article  Google Scholar 

  • McWilliam M, Pratchett MS, Hoogenboom MO, Hughes TP (2020) Deficits in functional trait diversity following recovery on coral reefs. Proceedings of the Royal Society Biological Sciences 287:1–9

    Google Scholar 

  • Mies M, Güth AZ, Tenório AA, Banha TNS, Waters LG, Polito PS, Taniguchi S, Bícego MC, Sumida PYG (2018) In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs 37:677–689

    Article  Google Scholar 

  • Mies M, Francini-Filho RB, Zilberberg C, Garrido AG, Longo GO, Laurentino E, Güth AZ, Sumida PYG, Banha TNS (2020) South Atlantic Coral Reefs Are Major Global Warming Refugia and Less Susceptible to Bleaching. Front Mar Sci 7:514

    Article  Google Scholar 

  • Morais J, Morais RA, Tebbett SB, Pratchett MS, Bellwood DR (2021) Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines. Sci Rep 11:18787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morelli TL, Barrows CW, Ramirez AR, Cartwright JM, Ackerly DD, Eaves TD, Ebersole JL, Krawchuk MA, Letcher BH, Mahalovich MF, Meigs GW, Michalak JL, Millar CI, Quiñones RM, Stralberg D, Thorne JH (2020) Climate-change refugia: biodiversity in the slow lane. Front Ecol Environ 18:228–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-González JE, Bender M, Chabanet P, Floeter SR, Friedlander A, Vigliola L, Bellwood DR (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences USA 111:13757–13762

    Article  CAS  Google Scholar 

  • Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO, Minte-Vera CV, Teixeira JB, Thompson FL, Dutra GF, Sumida PYG, Guth AZ, Lopes RM, Bastos AC (2013) Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont Shelf Res 70:109–117

    Article  Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-González JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    Article  CAS  PubMed  Google Scholar 

  • Nogueira MM, Neves E, Johnsson R (2015) Effects of habitat structure on the epifaunal community in Mussismilia corals: does coral morphology influence the richness and abundance of associated crustacean fauna? Helgol Mar Res 69:221–229

    Article  Google Scholar 

  • Nogueira MM, Neves E, Johnsson R (2021) Effects of habitat structure on the mollusc assemblage in Mussismilia corals: evaluation of the influence of different coral growth morphology. J Mar Biol Assoc UK 101:61–69

    Article  CAS  Google Scholar 

  • Ong L, Holland KN (2010) Bioerosion of coral reefs by two Hawaiian Parrotfishes: species size differences and fishery implications. Mar Biol 157:1313–1323

    Article  Google Scholar 

  • Paula YC, Schiavetti A, Sampaio CL, Caleron E (2018) The effects of feeding by visitors on reef fish in a Marine Protected Area open to Tourism. Biota Neotropica 18

  • Pereira PHC, Lima G, Pontes A, Silva S, Silva E, Sampaio CLS, Pinto TK, Miranda RJ, Tiego A, Caon J, Seoane JCS (2022) Unprecedented coral mortality on Southwestern Atlantic (SWA) coral reefs following major thermal stress. Front Mar Sci 9:725778

    Article  Google Scholar 

  • Pereira-Filho GH, Mendes VR, Perry CT, Shintate GI, Niz WC, Sawakuchi AO, Bastos AC, Giannini PC, Motta FS, Millo C, Paula-Santos GM, Moura RL (2021) Growing at the limit: Reef growth sensitivity to climate and oceanographic changes in the South Western Atlantic. Global Planet Change 201:103479

    Article  Google Scholar 

  • Perry CT, Edinger EN, Kench PS, Murphy GN, Smithers SG, Steneck RS, Mumby PJ (2012) Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31:853–868

    Article  Google Scholar 

  • Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS, Mumby PJ (2013) Caribbean-wide decline in carbonate production threatens coral reef growth. Nat Commun 4:1402

    Article  PubMed  Google Scholar 

  • Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG, Di Dario F, Ferreira CEL, Figueiredo-Filho J, Francini-Filho RB, Gasparini JL, Joyeux J-C, Luiz OJ, Mincarone MM, Moura RL, Nunes JACC, Quimbayo JP, Rosa RS, Sampaio CLS, Sazima I, Simon T, Vila-Nova DA, Floeter SR (2018) South-western Atlantic reef fishes: zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib 24:951–965

    Article  Google Scholar 

  • Pratchett MS, McWilliam MJ, Riegl B (2020) Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs 783–793

  • Randi CB, Becker AC, Willemes MJ, Perry CT, Salgado LT, Carvalho RT, Motta FS, Moura RL, Moraes FC, Pereira-Filho GH (2021) Calcium carbonate production in the southernmost subtropical Atlantic coral reef. Mar Environ Res 172:105490

    Article  CAS  PubMed  Google Scholar 

  • Roff G, Zhao JX, Mumby PJ (2015) Decadal-scale rates of reef erosion following El Niño-related mass coral mortality. Global Change Biology 21:4415–1124

    Article  PubMed  Google Scholar 

  • Sano M, Shimizu M, Nose Y (1987) Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at Iriomote Island. Japan Marine Ecology Progress Series 37:191–199

    Article  Google Scholar 

  • Sheppard CR, Spalding M, Bradshaw C, Wilson S (2002) Erosion vs. recovery of coral reefs after 1998 El Niño: Chagos reefs, Indian Ocean. AMBIO: A Journal of the Human Environment. 31:40–48

    Article  Google Scholar 

  • Sheppard C, Dixon DJ, Gourlay M, Sheppard A, Payet R (2005) Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuar Coast Shelf Sci 64:223–234

    Article  Google Scholar 

  • Siebeck UE, Marshall NJ, Klüter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching using a colour reference card. Coral Reefs 25(3):453–460

  • Siebeck UE, Logan D, Marshall NJ (2008) CoralWatch—a flexible coral bleaching monitoring tool for you and your group. Proceedings of the 11th International Coral Reef Symposium 1:7–11

  • Skirving WJ, Heron SF, Marsh BL, Liu G, De La Cour JL, Geiger EF, Eakin CM (2019) The relentless march of mass coral bleaching: a global perspective of changing heat stress. Coral Reefs 38:547–557

    Article  Google Scholar 

  • Soares MO, Rossi S, Gurgel AR, Lucas CC, Tavares TC, Diniz B, Feitosa CV, Rabelo EF, Pereira PHC, Kikuchi RKP, Leão ZMAN, Cruz ICS, Carneiro PBM, Alvarez-Filip L (2021) Impacts of a changing environment on marginal coral reefs in the Tropical Southwestern Atlantic. Ocean Coast Manag 210:105692

    Article  Google Scholar 

  • Sully S, van Woesik R (2020) Turbid reefs moderate coral bleaching under climate-related temperature stress. Glob Change Biol 26:1367–1373

    Article  Google Scholar 

  • Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté E, Zoccola D, Allemand D (2011) Coral biomineralization: From the gene to the environment. Journal of Marine Biology and Ecology 408:58–78

    Article  Google Scholar 

  • Teixeira CD, Leitão RL, Ribeiro FV, Moraes FC, Neves LM, Bastos AC, Pereira-Filho GH, Kampel M, Salomon PS, Sá JA, Falsarella LN, Amario M, Abieri ML, Pereira RC, Amado-Filho GM, Moura RL (2019) Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs 38:801–813

    Article  Google Scholar 

  • Toonen RJ, Bowen BW, Iacchei M, Briggs JC (2016) Biogeography, Marine. In: Kliman RM (ed) Encyclopedia of evolutionary biology, vol 1. Oxford Academic Press, pp 166–178

  • Tribollet A, Golubic S (2011) Reef bioerosion: agents and processes. Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht, pp 435–449

  • Trygonis V, Sini M (2012) PhotoQuad: a dedicated seabed image processing software, and a comparative error analysis of four photoquadrat methods. J Exp Mar Biol Ecol 424:99–108

    Article  Google Scholar 

  • van Dam JW, Negri AP, Uthicke S, Mueller JF (2011) Chemical pollution on coral reefs: exposure and ecological effects. In: Sánchez-Bayo F, van den Brink PJ, Mann RM (eds) Ecological Impacts of Toxic Chemicals. Bentham Science Publishers, pp 187–211

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 19:3059–3066

    Article  Google Scholar 

  • Werner TB, Pinto LP, Dutra GF, Pereira PG (2010) Abrolhos 2000: conserving the Southern Atlantic’s richest coastal biodiversity into the next century. Coast Manag 28:99–108

    Google Scholar 

  • Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, Iglesias-Prieto R, Palmer C, Bythell JC, Ortiz JC, Loya Y, Woesik RV (2011) Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res 62:205–215

    Article  CAS  Google Scholar 

  • Wismer S, Tebbett SB, Streit RP, Bellwood DR (2019a) Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci Total Environ 650:1487–1498

    Article  CAS  PubMed  Google Scholar 

  • Wismer S, Tebbett SB, Streit RP, Bellwood DR (2019b) Young fishes persist despite coral loss on the Great Barrier Reef. Communications Biology 2:1–7

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Coral Vivo Project and its sponsors Petrobras (Programa Petrobras Socioambiental) and Arraial d’Ajuda Eco Parque and also Thomás Banha for providing assistance with some of the data.

Author information

Authors and Affiliations

Authors

Contributions

GBB, CHFL, HE, PLD and MM designed the study; CHFL performed fieldwork; AMBR and KCCC provided infrastructure/material/technical support; GBB and AZG analyzed the data; and GBB, HE, AZG, KCCC, PLD and MM contributed to the manuscript.

Corresponding author

Correspondence to Giulia B. Braz.

Ethics declarations

Conflict of interest

On behalf of the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Lauren T. Toth

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1157 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braz, G.B., Lacerda, C.H.F., Evangelista, H. et al. Unprecedented erosion of Mussismilia harttii, a major reef-building species in the Southwestern Atlantic, after the 2019 bleaching event. Coral Reefs 41, 1537–1548 (2022). https://doi.org/10.1007/s00338-022-02303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-022-02303-1

Keywords

Navigation