Skip to main content

Advertisement

Log in

Strong genetic structure and limited connectivity among populations of Clark’s Anemonefish (Amphiprion clarkii) in the centre of marine biodiversity

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Populations of anemonefish species often show signs of local isolation due to limited dispersal potential and oceanographic conditions. Additionally, anthropogenic pressure, such as overharvesting and coral reef exploitation causes reduced population size, eventually leading to local extinction. The understanding of the genetic population structure, as well as the influence of both historical and current connectivity, is required to design effective marine protected area (MPA) networks. In this study, the genetic structure of Clark’s Anemonefish (Amphiprion clarkii) based on 209 individuals from 16 samples sites in the Indo-Malay Archipelago (IMA) is assessed through mitochondrial control region (mtCR) sequences and eight nuclear microsatellite loci. Results provided evidence of a significant genetic structure (mtCR: Φst = 0.42, Φct = 0.64; microsatellites: Fst = 0.01, Fct = 0.05). Genetic breaks were identified among Western (Padang Karimunjawa), Central (Sulawesi, Borneo, Bali, Komodo, Timor) and Eastern (Biak) IMA populations, with almost no gene flow. This matches with patterns obtained for congeneric and other coral reef taxa. Due to the restricted connectivity among these three regions, it is suggested to consider them as separate management areas in the design of MPA networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ackiss AS, Pardede S, Crandall ED, Ambariyanto A-L, Romena N, Barber PH, Carpenter KE (2013) Pronounced genetic structure in a highly mobile coral reef fish, Caesio cuning, in the Coral Triangle. Mar Ecol Prog Ser 480:185–197

    Article  Google Scholar 

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744

    Article  CAS  PubMed  Google Scholar 

  • Barber PH, Moosa MK, Palumbi SR (2002) Rapid recovery of genetic diversity of stomatopod populations on Krakatau: temporal and spatial scales of marine larval dispersal. Proc R Soc Lond B 269:1591–1597

    Article  CAS  Google Scholar 

  • Beldade R, Holbrook SJ, Schmitt RJ, Planes S, Malone D, Bernardi G (2012) Larger female fish contribute disproportionately more to self-replenishment. Proc R Soc B 279:2116–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300

    Google Scholar 

  • Buston PM, Bogdanowicz AW, Harrison RG (2007) Are clownfish groups composed of close relatives? An analysis of microsatellite DNA variation in Amphiprion percula. Mol Ecol 16:3671–3678

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1667–1669

    Article  Google Scholar 

  • Crandall ED, Jones ME, Munoz MM, Akinrobe B, Erdmann MV, Barber PH (2008) Comparative phylogeography of two seastars and their ectosymbionts within the Coral Triangle. Mol Ecol 17:5276–5290

    Article  PubMed  Google Scholar 

  • Dawson MN (2014) Natural experiments and meta-analyses in comparative phylogeography. J Biogeogr 41:52–65

    Article  Google Scholar 

  • Dawson MN, Hays CG, Grosberg RK, Raimondi PT (2014) Dispersal potential and population genetic structure in the marine intertidal of the eastern North Pacific. Ecol Monogr 84:435–456

    Article  Google Scholar 

  • Dohna TA, Timm J, Hamid L, Kochzius M (2015) Limited connectivity and a phylogeographic break characterize populations of the pink anemonefish, Amphiprion perideraion, in the Indo-Malay Archipelago: inferences from a mitochondrial and microsatellite loci. Ecol Evol 5:1717–1733

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hey J, Nielsen R (2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA 104(8):2785–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui M, Kraemer WE, Seidel C, Nuryanto A, Joshi A, Kochzius M (2016) Comparative genetic population structure of three endangered giant clams (Tridacnidae) throughout the Indo-West Pacific: implications for divergence, connectivity, and conservation. J Molluscan Stud 82:403–414

    Article  Google Scholar 

  • Hui M, Nuryanto A, Kochzius M (2017) Concordance of microsatellite and mitochondrial DNA markers in detecting genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago. Mar Ecol 38:e12389

    Article  CAS  Google Scholar 

  • Huyghe F, Kochzius M (2017) Highly restricted gene flow between disjunct populations of the skunk clownfish (Amphiprion akallopisos) in the Indian Ocean. Mar Ecol 38:e12357

    Article  Google Scholar 

  • Huyghe F, Kochzius M (2018) Sea surface currents and geographic isolation shape the genetic population structure of a coral reef fish in the Indian Ocean. PLoS ONE 13:e0193825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:131421318

    Google Scholar 

  • Knittweis L, Kraemer WE, Timm J, Kochzius M (2009) Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts. Conserv Genet 10:241–249

    Article  Google Scholar 

  • Kochzius M, Söller R, Khalaf MA, Blohm D (2003) Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences. Mol Phylogenet Evol 28:396–403

    Article  CAS  PubMed  Google Scholar 

  • Kochzius M, Nuryanto A (2009) Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago: implications related to evolutionary processes and connectivity. Mol Ecol 17:3775–3787

    Article  CAS  Google Scholar 

  • Kochzius M, Seidel C, Hauschild J, Kirchhoff S, Mester P, Meyer-Wachsmuth I, Nuryanto A, Timm J (2009) Genetic population structures of the blue starfish Linckia laevigata and its gastropod ectoparasite Thyca crystallina. Mar Ecol Prog Ser 396:211–219

    Article  CAS  Google Scholar 

  • Kool JT, Paris CB, Barber PH, Cowen RK (2011) Connectivity and the development of population genetic structure in Indo-West Pacific coral reef communities: Indo-West Pacific connectivity. Glob Ecol Biogeogr 20:695–706

    Article  Google Scholar 

  • Lee W-J, Conroy J, Howell WH, ThomasD K (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66

    Article  CAS  PubMed  Google Scholar 

  • Liu SYV, Yu HT, Dai CF (2007) Eight microsatellite loci in Clark’s anemonefish, Amphiprion clarkii. Mol Ecol Notes 7:1169–1171

    Article  CAS  Google Scholar 

  • Madduppa HH, Timm J, Kochzius M (2014a) Interspecific, spatial and temporal variability of self-recruitment in anemonefishes. PLoS ONE 9:12

    Article  CAS  Google Scholar 

  • Madduppa HH, von Juterzenka K, Syakir M, Kochzius M (2014b) Socio-economy of marine ornamental fishery and its impact on the population structure of the clown anemonefish Amphiprion ocellaris and its host anemones in Spermonde Archipelago, Indonesia. Ocean Coast Manag 100:41–50

    Article  Google Scholar 

  • Madduppa HH, Timm J, Kochzius M (2018) Reduced genetic diversity in the clown anemonefish Amphiprion ocellaris in exploited reefs of Spermonde Archipelago, Indonesia. Front Mar Sci 5:80

    Article  Google Scholar 

  • McMillan WO, Palumbi SR (1995) Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proc R Soc Lond B 260:229–236

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Nuryanto A, Kochzius M (2009) Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima. Coral Reefs 28:607–619

    Article  Google Scholar 

  • Pinsky ML, Montes HR Jr, Palumbi SR (2010) Using isolation by distance and effective density to estimate dispersal scales in anemonefish. Evolution 64(9):2688–2700

    Article  PubMed  Google Scholar 

  • Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci USA 106:5693–5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quenouille B, Bouchenak-Khelladi Y, Hervet C, Planes S (2004) Eleven microsatellite loci for the saddleback clownfish Amphiprion polymnus. Mol Ecol Notes 4:291–293

    Article  CAS  Google Scholar 

  • Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86

    Article  CAS  PubMed  Google Scholar 

  • Raynal R, Crandall ED, Barber PH, Mahardika G, Lagman M, Carpenter KE (2014) Basin isolation and oceanographic features influencing lineage diversification in the humbug damselfish (Dascyllus aruanus) in the Coral Triangle. Bull Mar Sci 90:513–532

    Article  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, Molnar J, Recchia CA, Robertson J (2007) Marine Eecoregions of the world: a bioregionalization of coastal and shelf areas. Biosci J 57:573–583

    Article  Google Scholar 

  • Simpson SD, Harrison HB, Claereboudt MR, Planes S (2014) Long-distance dispersal via ocean currents connects clownfish populations throughout entire species range. PLoS ONE 9:e107610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slatkin M, Excoffier L (1996) Testing for linkage disequilibrium in genotypic data using the expectation-maximization algorithm. Heredity 4:77–383

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 3:585–595

    Article  Google Scholar 

  • Timm J, Kochzius M (2008) Geological history and oceanography of the Indo-Malay Archipelago shape the genetic population structure in the false clown anemonefish (Amphiprion ocellaris). Mol Ecol 17:3999–4014

    Article  PubMed  Google Scholar 

  • Timm J, Planes S, Kochzius M (2012) High similarity of genetic population structure in the false clown anemonefish (Amphiprion ocellaris) found in microsatellite and mitochondrial control region analysis. Conserv Genet 13:693–706

    Article  CAS  Google Scholar 

  • Timm J, Kochzius M, Madduppa HH, Neuhaus AI, Dohna T (2017) Small-scale genetic population structure of coral reef organisms in Spermonde Archipelago. Indonesia Front Mar Sci 4:294

    Article  Google Scholar 

  • van der Ven RM, Heynderickx H, Kochzius M (2021) Differences in genetic diversity and divergence between brooding and broadcast spawning corals across two spatial scales in the Coral Triangle region. Mar Biol 168:17

    Article  Google Scholar 

  • Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeography 27:1153–1167

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Ye L, Yang SY, Zhu XM, Liu M, Lin JY, Wu KC (2011) Effects of temperature on survival, development, growth and feeding of larvae of Yellowtail clownfish Amphiprion clarkii (Pisces: Perciformes). Acta Ecol Sin 31:241–245

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Erasmus Mundus Masters Course “TROPIMUNDO” for granting a master thesis scholarship to H.D.; the German Federal Ministry of Education and Research (BMBF, Grant Nos. 03F0390B, 03F0472B and 03F0643B) for funding in the framework of the German-Indonesian project “Science for the Protection of Indonesian Coastal Ecosystems (SPICE)”; D. Blohm (Universität Bremen, Germany) for support and sub-project coordination; Leibniz Centre for Tropical Marine Research (Bremen, Germany) for support, cooperation, and project coordination; J. Jompa, scientists and students of the Hasanuddin University (Makassar, Indonesia) for logistics and help during field work; the competent Indonesian authorities for permits. The SPICE project was conducted and permitted under the governmental agreement between the BMBF and the Indonesian Ministry for Research and Technology (RISTEK), Indonesian Institute of Sciences (LIPI), Indonesian Ministry of Maritime Affairs and Fisheries (DKP) and Indonesian Agency for the Assessment and Application of Technology (BPPT). We also thank two anonymous reviewers for their comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kochzius.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Peter Francis Cowman

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducret, H., Timm, J., Rodríguez-Moreno, M. et al. Strong genetic structure and limited connectivity among populations of Clark’s Anemonefish (Amphiprion clarkii) in the centre of marine biodiversity. Coral Reefs 41, 599–609 (2022). https://doi.org/10.1007/s00338-021-02205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02205-8

Keywords

Navigation