Skip to main content

Advertisement

Log in

Different responses of scleractinian coral Acropora pruinosa from Weizhou Island during extreme high temperature events

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Ecological surveys observe coral “winners” and “losers” in global coral bleaching events. However, the key contributors to holobiont tolerance and interactions between symbionts remain unclear. Herein, we compared bleaching and unbleaching Acropora pruinosa corals from Weizhou Island, during an extreme high-temperature event in the northern South China Sea in 2020. We found the dominant Symbiodiniaceae subclade in the bleaching and unbleaching corals to be C1; however, the density of Symbiodiniaceae in the latter was significantly higher than that in the former. Additionally, the symbiotic bacteria α diversity in the unbleaching coral was significantly higher than that in the bleaching coral, with a reorganized bacterial community structure. Core microbiome analyses revealed 55 bacterial core operational taxonomic units (OTUs), of which 10 were significantly differentially enriched between the two coral groups. The significantly enriched bacterial core OTUs in the unbleaching coral were primarily nitrogen cycling related, while those enriched in the bleaching coral were associated with antimicrobial activity. RNA-Seq analyses revealed that significantly upregulated genes in the bleaching coral were primarily associated with diseases and autophagy, while those in the unbleaching coral were associated with immune defense and maintenance of the symbiotic relationship between corals and symbionts. We propose that the differences in tolerance of A. pruinosa result from the cooperation between coral host, Symbiodiniaceae, and symbiotic bacteria. In extreme high-temperature events, unbleaching corals may maintain stable symbiotic relationships by increasing the diversity of symbiotic bacteria, regulating the structure of the symbiotic bacteria community, improving the interaction between coral host and symbiont and enhancing host immunity, thus avoiding coral bleaching. This study illuminates the relationship between the coral symbiont and tolerance differences of coral holobionts, providing new insights for further exploration into the adaptability of scleractinian corals in the context of global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ainsworth TD, Krause L, Bridge T, Torda G, Raina J, Zakrzewski M, Gates RD, Padilla-Gamiño JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, Leggat W (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. The ISME J 9:2261–2274

    CAS  Google Scholar 

  • Alvarado P, Huang Y, Wang J, Garrido I, Leiva S (2018) Phylogeny and bioactivity of epiphytic Gram-positive bacteria isolated from three co-occurring antarctic macroalgae. Antonie Van Leeuwenhoek 111:1543–1555

    CAS  PubMed  Google Scholar 

  • Andréa G, Mark EW, Stephen JL, Matthew DA, Verena S, Michael M, Justin B, Yohei M (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Global Change Biol 20(12):3823–3833

    Google Scholar 

  • Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse TC, Voolstra CR (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol 23:4418–4433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA, Müller R, Meese E, Lenhof H (2007) GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res 35:W186–W192

    PubMed  PubMed Central  Google Scholar 

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A 110(4):1387–1392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beutler B (2004) Innate immunity: an overview. Mol Immunol 40:845–859

    CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolyen E, Rideout J, Dillon M et al (2019) Author correction: reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(9):1091

    CAS  PubMed  Google Scholar 

  • Brener-Raffalli K, Vidal-Dupiol J, Adjeroud M, Rey O, Romans P, Bonhomme F, Pratlong M, Feuillassier L, Claereboudt M, Magalon H, Gélin P, Pontarotti P, Aurelle D, Mitta G, Toulza E, Haguenauer A, Pillot R. (2018). Gene expression plasticity and frontloading promote thermotolerance in Pocilloporid corals. bioRxiv, 398602.

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    PubMed  PubMed Central  Google Scholar 

  • Chen B, Yu K, Qin Z, Liang J, Wang G, Huang X, Wu Q, Jiang L (2019) Latitudinal variation in the molecular diversity and community composition of Symbiodiniaceae in coral from the South China Sea. Front Microbiol 10:1278

    PubMed  PubMed Central  Google Scholar 

  • Chen B, Yu K, Liang J, Huang W, Wang G, Su H, Qin Z, Huang X, Pan Z, Luo W, Luo Y, Wang Y (2020) Dispersal, genetic variation, and symbiont interaction network of heat-tolerant endosymbiont Durusdinium trenchii: Insights into the adaptive potential of coral to climate change. Sci Total Environ 723:138026

    CAS  PubMed  Google Scholar 

  • Chen B, Yu K, Liao Z, Yu X, Qin Z, Liang J, Wang G, Wu Q, Jiang L (2021) Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. Sci Total Environ 765:142690

    CAS  PubMed  Google Scholar 

  • Chiu JMY, Li S, Li A, Po B, Zhang R, Shin PKS, Qiu J (2012) Bacteria associated with skeletal tissue growth anomalies in the coral Platygyra carnosus. FEMS Microbiol Ecol 79(2):380–391

    CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  • Giovannoni SJ, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343–348

    CAS  PubMed  Google Scholar 

  • Hernandez-Agreda A, Gates RD, Ainsworth TD (2017) Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol 25:125–140

    CAS  PubMed  Google Scholar 

  • Jessen C, Villa Lizcano JF, Bayer T, Roder C, Aranda M, Wild C, Voolstra CR (2013) In-situ Effects of Eutrophication and Overfishing on Physiology and Bacterial Diversity of the Red Sea Coral Acropora hemprichii. PLoS ONE 8(4):e62091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kellogg CA, Goldsmith DB, Gray MA (2017) Biogeographic comparison of Lophelia-associated bacterial communities in the western Atlantic reveals conserved core microbiome. Front Microbiol 8:796

    PubMed  PubMed Central  Google Scholar 

  • Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Warwick Vesztrocy A, Naldi A, Mungall CJ, Yunes JM, Botvinnik O, Weigel M, Dampier W, Dessimoz C, Flick P, Tang H (2018) GOATOOLS: A Python library for Gene Ontology analyses. Sci Rep 8(1):10872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawler SN, Kellogg CA, France SC, Clostio RW, Brooke SD, Ross SW (2016) Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species. Front Microbiol 7:458

    PubMed  PubMed Central  Google Scholar 

  • Leite DCA, Leão P, Garrido AG, Lins U, Santos HF, Pires DO, Castro CB, van Elsas JD, Zilberberg C, Rosado AS, Peixoto RS (2017) Broadcast spawning coral Mussismilia hispida can vertically transfer its associated bacterial core. Front Microbiol 8:176

    PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Qu C, Bian Y, Gu C, Jiang X, Song Y (2019) New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics. Environ Pollut 255:113312

    CAS  PubMed  Google Scholar 

  • Liang J, Yu K, Wang Y, Huang X, Huang W, Qin Z, Pan Z, Yao Q, Wang W, Wu Z (2017) Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress. Front Microbiol 8:979

    PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4(2):122–131

    Google Scholar 

  • MacEwan DJ (2002) TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 14:477–492

    CAS  PubMed  Google Scholar 

  • MacKnight NJ, Cobleigh K, Lasseigne D, Chaves-Fonnegra A, Gutting A, Dimos B, Antoine J, Fuess L, Ricci C, Butler C, Muller EM, Mydlarz LD, Brandt M (2021) Microbial dysbiosis reflects disease resistance in diverse coral species. Commun Biol 4:679

    PubMed  PubMed Central  Google Scholar 

  • Manfred GG, Brian JH, Moran Y, Joshua ZL, Dawn AT, Ido A, Xian A, Lin F, Raktima R, Qiandong Z, Zehua C, Evan M, Nir H, Andreas G, Nicholas R, Federica DP, Bruce WB, Chad N, Kerstin L, Nir F, Aviv R (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Google Scholar 

  • Muscatine L, Porter JW (1977) Reef Corals: Mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Google Scholar 

  • Olson ND, Ainsworth TD, Gates RD, Takabayashi M (2009) Diazotrophic bacteria associated with Hawaiian Montipora corals: Diversity and abundance in correlation with symbiotic dinoflagellates. J Exp Mar Biol Ecol 371:140–146

    CAS  Google Scholar 

  • Palacio-Castro AM, Dennison CE, Rosales SM, Baker AC (2021) Variation in susceptibility among three Caribbean coral species and their algal symbionts indicates the threatened staghorn coral, Acropora cervicornis, is particularly susceptible to elevated nutrients and heat stress. Coral Reefs.

  • Palmer CV (2018) Immunity and the coral crisis. Commun Biol 1:91

    PubMed  PubMed Central  Google Scholar 

  • Palmer CV, Bythell JC, Willis BL (2010) Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. FASEB J 24:1935–1946

    CAS  PubMed  Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898

    CAS  PubMed  Google Scholar 

  • Pollock FJ, Lamb JB, van de Water JA, Smith HA, Schaffelke B, Willis BL, Bourne DG (2019) Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. Royal Soc Open Sci. 6(6):190355

  • Prada C, Hanna B, Budd AF, Woodley CM, Schmutz J, Grimwood J, Iglesias-Prieto R, Pandolfi JM, Levitan D, Johnson KG, Knowlton N, Kitano H, DeGiorgio M, Medina M (2016) Empty Niches after Extinctions Increase Population Sizes of Modern Corals. CURR BIOL 26:3190–3194

    CAS  PubMed  Google Scholar 

  • Pratte ZA, Longo GO, Burns AS, Hay ME, Stewart FJ (2018) Contact with turf algae alters the coral microbiome: contact versus systemic impacts. Coral Reefs 37:1–13

    Google Scholar 

  • Qin Z, Yu K, Chen B, Wang Y, Liang J, Luo W, Xu L, Huang X (2019) Diversity of Symbiodiniaceae in 15 coral species from the southern South China Sea: potential relationship with coral thermal adaptability. Front Microbiol 10:2343

    PubMed  PubMed Central  Google Scholar 

  • Qin Z, Yu K, Liang Y, Chen B, Huang X (2020b) Latitudinal variation in reef coral tissue thickness in the South China Sea: potential linkage with coral tolerance to environmental stress. Sci Total Environ 711:134610

    CAS  PubMed  Google Scholar 

  • Qin Z, Yu K, Liang J, Yao Q, Chen B. (2020a). Significant changes in microbial communities associated with reef corals in the southern South China Sea during the 2015/2016 global-scale coral bleaching event. J Geophys Res-Oceans. 125, e2019JC015579.

  • Rajasabapathy R, Ghadi SC, Manikandan B, Mohandass C, Surendran A, Dastager SG, Meena RM, James RA (2020) Antimicrobial profiling of coral reef and sponge associated bacteria from southeast coast of India. Microb Pathog 141:103972

    CAS  PubMed  Google Scholar 

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    CAS  PubMed  Google Scholar 

  • Sawall Y, Al-Sofyani A, Banguera-Hinestroza E, Voolstra CR (2014) Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea. PLoS ONE 9:e103179

    PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60

    PubMed  PubMed Central  Google Scholar 

  • Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–323

    CAS  PubMed  Google Scholar 

  • Sweet MJ, Brown BE, Dunne RP, Singleton I, Bulling M (2017) Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs 36:815–828

    Google Scholar 

  • Tang J, Ni X, Zhou Z, Wang L, Lin S (2018) Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. ENVIRON POLLUT 243:66–74

    CAS  PubMed  Google Scholar 

  • Tanwar UK, Pruthi V, Randhawa GS (2017) RNA-Seq of guar (Cyamopsis tetragonoloba, L. Taub.) leaves: de novo transcriptome assembly, functional annotation and development of genomic resources. Front Plant Sci 8:91

    PubMed  PubMed Central  Google Scholar 

  • Thomas L, Kendrick GA, Kennington WJ, Richards ZT, Stat M (2014) Exploring Symbiodinium diversity and host specificity in Acropora corals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Mol Ecol 23:3113–3126

    CAS  PubMed  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. MAR BIOL 148:711–722

    Google Scholar 

  • Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR (2017) Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). MOL ECOL 26:2640–2659

    CAS  PubMed  Google Scholar 

  • Traylor-Knowles N, Connelly MT (2017) What is currently known about the effects of climate change on the coral immune response. CURR CLIM CHANGE REP 3:252–260

    Google Scholar 

  • van Oppen MJH, Medina M (2020) Coral evolutionary responses to microbial symbioses. Philos Trans R Soc Lond B Biol Sci 375:20190591

    PubMed  PubMed Central  Google Scholar 

  • Vijayan V, Jasmin C, Anas A, Parakkaparambil Kuttan S, Vinothkumar S, Perunninakulath Subrayan P, Nair S (2017) Sponge-associated bacteria produce non-cytotoxic melanin which protects animal cells from photo-toxicity. Appl Biochem Biotechnol 183:396–411

    CAS  PubMed  Google Scholar 

  • Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot JF, Tambutté S, Allemand D, Aranda M (2017) Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci Rep 7:17583

    PubMed  PubMed Central  Google Scholar 

  • Weiler BA, Verhoeven JTP, Dufour SC (2018) Bacterial communities in tissues and surficial mucus of the cold-water coral Paragorgia arborea. FRONT MAR SCI 5:378

    Google Scholar 

  • Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34:W720–W724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Zhang Z, Yu K, Huang X, Chen H, Qin Z, Liang R (2021) Spatial variations in the trophic status of Favia palauensis corals in the South China Sea: Insights into their different adaptabilities under contrasting environmental conditions. Sci China Earth Sci 64:839–852

    Google Scholar 

  • Yang S, Tseng C, Huang C, Chen C, Tandon K, Lee STM, Chiang P, Shiu J, Chen CA, Tang S (2017) Long-term survey is necessary to reveal various shifts of microbial composition in corals. Front Microbiol 8:1094

    PubMed  PubMed Central  Google Scholar 

  • Yu W, Wang W, Yu K, Wang Y, Huang X, Huang R, Liao Z, Xu S, Chen X (2019) Rapid decline of a relatively high latitude coral assemblage at Weizhou Island, northern South China Sea. BIODIVERS CONSERV 28:3925–3949

    Google Scholar 

  • Yu X, Yu K, Liao Z, Liang J, Deng C, Huang W, Huang Y (2020a) Potential molecular traits underlying environmental tolerance of Pavona decussata and Acropora pruinosa in Weizhou Island, northern South China Sea. Mar Pollut Bull 156:111199

    CAS  PubMed  Google Scholar 

  • Yu X, Yu K, Huang W, Liang J, Qin Z, Chen B, Yao Q, Liao Z (2020b) Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa. Sci Total Environ 733:139319

    CAS  PubMed  Google Scholar 

  • Yu X, Yu K, Chen B, Liao Z, Qin Z, Yao Q, Huang Y, Liang J, Huang W (2021a) Nanopore long-read RNAseq reveals regulatory mechanisms of thermally variable reef environments promoting heat tolerance of scleractinian coral Pocillopora damicornis. Environ Res 195:110782

    CAS  PubMed  Google Scholar 

  • Yu X, Yu K, Liao Z, Chen B, Deng C, Yu J, Yao Q, Qin Z, Liang J (2021b) Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea. Sci Total Environ 792:148438

    CAS  PubMed  Google Scholar 

  • Zaneveld JR, McMinds R, Vega TR (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2:17121

    CAS  PubMed  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620

    CAS  PubMed  Google Scholar 

  • Zhou Z, Wu Y, Zhang C, Li C, Chen G, Yu X, Shi X, Xu Y, Wang L, Huang B (2017) Suppression of NF-κB signal pathway by NLRC3-like protein in stony coral Acropora aculeus under heat stress. Fish Shellfish Immunol 67:322–330

    CAS  PubMed  Google Scholar 

  • Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017a) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8:14213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler M, Arif C, Burt JA, Dobretsov S, Roder C, LaJeunesse TC, Voolstra CR (2017b) Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J Biogeogr 44:674–686

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to all the laboratory members for their continuous technical advice and helpful discussions. This work was supported by the National Natural Science Foundation of China (Nos.42030502 and 42090041), the Guangxi scientific projects (No. AD17129063 and AA17204074), and the BaGui Scholars Program Foundation (No. 2014BGXZGX03). We thank Dr. Morgan S. Pratchett and reviewers for their constructive suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefu Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Morgan S. Pratchett

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yu, K., Chen, B. et al. Different responses of scleractinian coral Acropora pruinosa from Weizhou Island during extreme high temperature events. Coral Reefs 40, 1697–1711 (2021). https://doi.org/10.1007/s00338-021-02182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02182-y

Keywords

Navigation