Skip to main content

Plasticity of symbiont acquisition in new recruits of the massive coral Platygyra daedalea under ocean warming and acidification

Abstract

Symbiosis establishment is a milestone in the life cycles of most broadcast-spawning corals; however, it remains largely unknown how initial symbiont infection is affected by ocean warming and acidification, particularly for massive corals. This study investigated the combined effects of elevated temperature (29 vs. 31 °C) and pCO2 (~ 450 vs. ~ 1000 μatm) on the recruits of a widespread massive coral, Platygyra daedalea. Results showed that geometric diameter and symbiosis establishment were unaffected by high pCO2, while elevated temperature significantly reduced successful symbiont infection by 50% and retarded the geometric diameter by 6%. Although neither increased temperature, pCO2, nor their interaction affected survival or algal pigmentation of recruits, there was an inverse relationship between symbiont infection rates and survivorship, especially at high temperatures, possibly as a result of oxidative stress caused by algal symbionts under increased temperature. Intriguingly, the proportion of Durusdinium did not increase in recruits at 31 °C, while recruits reared under high pCO2 hosted less Breviolum and more Durusdinium, indicating a high degree of plasticity of early symbiosis and contrasting to the previous finding that heat stress usually leads to the prevalence of thermally tolerant Durusdinium in coral recruits. These results suggest that ocean warming is likely to be more deleterious for the early success of P. daedalea than ocean acidification and provide insights into our understanding of coral-algal symbiotic partnerships under future climatic conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B 275:2273–2282

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Abrego D, Van Oppen MJH, Willis BL (2009a) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3532–3543

    PubMed  PubMed Central  Article  Google Scholar 

  3. Abrego D, Van Oppen MJH, Willis BL (2009b) Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol 18:3518–3531

    PubMed  PubMed Central  Article  Google Scholar 

  4. Abrego D, Willis BL, Oppen MJHV (2012) Impact of light and temperature on the uptake of algal symbionts by coral juveniles. PLoS ONE 7:e50311

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Adams LM, Cumbo VR, Takabayashi M (2009) Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Mar Ecol Prog Ser 377:149–156

    Article  Google Scholar 

  6. Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob Change Biol 17:2478–2487

    Article  Google Scholar 

  7. Albright R, Mason B (2013) Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8(2):e56468

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci USA 107:20400–20404

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Ali A, Kriefall NG, Emery LE, Kenkel CD, Matz MV, Davies SW (2019) Recruit symbiosis establishment and Symbiodiniaceae composition influenced by adult corals and reef sediment. Coral Reefs 38:405–415

    Article  Google Scholar 

  10. Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811–1823

    CAS  Article  Google Scholar 

  11. Anlauf H, D’Croz L, O’Dea A (2011) A corrosive concoction: The combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J Exp Mar Bio Ecol 397:13–20

    Article  Google Scholar 

  12. Anthony K, Kline D, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Babcock RC (1991) Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol Monogr 61:225–244

    Article  Google Scholar 

  14. Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571

    Article  Google Scholar 

  15. Baird AH, Bhagooli R, Nonaka M, Yakovleva I, Yamamoto HH, Hidaka M, Yamasaki H (2010) Environmental controls on the establishment and development of algal symbiosis in corals. Proceedings of the 11th International Coral Reef Symposium, Ft Lauderdale, FL, USA, 7–11 July 2008 1:108–112

  16. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    CAS  PubMed  Article  Google Scholar 

  17. Bopp L, Resplandy L, Orr JC, Doney SC (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–6245

    Article  Google Scholar 

  18. Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405

    Article  Google Scholar 

  19. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Chamberland VF, Latijnhouwers KRW, Huisman J, Hartmann AC (1875) Vermeij MJA (2017) Costs and benefits of maternally inherited algal symbionts in coral larvae. Proc Royal Soc B 284:20170852

    Article  CAS  Google Scholar 

  21. Chua CM, Leggat W, Moya A, Baird AH (2013) Temperature affects the early life history stages of corals more than near future ocean acidification. Mar Ecol Prog Ser 475:85–92

    Article  Google Scholar 

  22. Claar DC, Starko S, Tietjen KL, Epstein HE, Cunning R, Cobb KM, Baker AC, Gates RD, Baum JK (2020) Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun 11:6097

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Coffroth MA, Santos S, R., Goulet T, L. (2001) Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Mar Ecol Prog Ser 222:85–96

    Article  Google Scholar 

  24. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118–127

    Article  Google Scholar 

  25. Cohen AL, McCorkle DC, de Putron S, Gaetani GA, Rose KA (2009) Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification. Geochem Geophys Geosyst 10:Q07005

    Article  CAS  Google Scholar 

  26. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2014) Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations. Limnol Oceanogr 59:1081–1091

    CAS  Article  Google Scholar 

  27. Cumbo VR, Baird AH, van Oppen MJH (2013) The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32:111–120

    Article  Google Scholar 

  28. Cumbo VR, van Oppen MJH, Baird AH (2018) Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Mar Ecol Prog Ser 587:117–127

    CAS  Article  Google Scholar 

  29. de Putron SJ, McCorkle DC, Cohen AL, Dillon AB (2010) The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals. Coral Reefs 30:321–328

    Article  Google Scholar 

  30. Depczynski M, Gilmour JP, Ridgway T, Barnes H, Heyward AJ, Holmes TH, Moore JAY, Radford BT, Thomson DP, Tinkler P, Wilson SK (2013) Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs 32:233–238

    Article  Google Scholar 

  31. Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    CAS  Article  Google Scholar 

  32. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap 34:1733–1743

    CAS  Article  Google Scholar 

  33. Douglas AE (1998) Host benefit and the evolution of specialization in symbiosis. Heredity 81:599–603

    Article  Google Scholar 

  34. Foster T, Gilmour JP, Chua CM, Falter JL, Mcculloch MT (2015) Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera. Coral Reefs 34:1217–1226

    Article  Google Scholar 

  35. Foster T, Falter JL, Mcculloch MT, Clode PL (2016) Ocean acidification causes structural deformities in juvenile coral skeletons. Sci Adv 2:e1501130

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner H-O, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. https://doi.org/10.1126/science.aac4722

    Article  PubMed  Google Scholar 

  37. Gómez-Cabrera M, Ortiz JC, Loh WKW, Ward S, Hoegh-Guldberg O (2008) Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27:219–226

    Article  Google Scholar 

  38. Goulet TL, Coffroth MA (2003) Stability of an octocoral-algal symbiosis over time and space. Mar Ecol Prog Ser 250:117–124

    Article  Google Scholar 

  39. Graham EM, Baird AH, Willis BL, Connolly SR (2013) Effects of delayed settlement on post-settlement growth and survival of scleractinian coral larvae. Oecologia 173:431–438

    PubMed  Article  Google Scholar 

  40. Hambleton EA, Guse A, Pringle JR (2014) Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. J Exp Biol 217:1613–1619

    PubMed  PubMed Central  Google Scholar 

  41. Harrison PL (2011) Sexual reproduction of scleractinian corals Coral reefs: an ecosystem in transition. Springer, pp59–85

  42. Herrera M, Klein SG, Campana S, Chen JE, Prasanna A, Duarte CM, Aranda M (2020) Temperature transcends partner specificity in the symbiosis establishment of a cnidarian. ISME J 15(1):141–153

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Google Scholar 

  44. Hoegh-Guldberg O, Mumby P, Hooten A, Steneck R, Greenfield P, Gomez E, Harvell C, Sale P, Edwards A, Caldeira K (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    CAS  PubMed  Article  Google Scholar 

  45. Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158

    Article  Google Scholar 

  46. Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Chang 2:116–120

    Article  Google Scholar 

  47. Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55(2):142–166

    Article  Google Scholar 

  48. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-y, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    CAS  PubMed  Article  Google Scholar 

  49. Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, Wiedenmann J, Voolstra CR (2019) SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour 19:1063–1080

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Jiang L, Huang H, Yuan XC, Yuan T, Zhang YY, Wen KC, Li XB, Zhou GW (2015) Effects of elevated pCO2 on the post-settlement development of Pocillopora damicornis. J Exp Mar Bio Ecol 473:169–175

    CAS  Article  Google Scholar 

  51. Jiang L, Sun YF, Zhang YY, Zhou GW, Li XB, Mccook LJ, Lian JS, Lei XM, Liu S, Cai L (2017) Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis. Biogeosciences 14:5741–5752

    Article  Google Scholar 

  52. Jiang L, Zhang F, Guo M-L, Guo Y-J, Zhang Y-Y, Zhou G-W, Cai L, Lian J-S, Qian P-Y, Huang H (2018) Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost. Coral Reefs 37:71–79

    Article  Google Scholar 

  53. Jiang L, Guo Y-J, Zhang F, Zhang Y-Y, McCook LJ, Yuan X-C, Lei X-M, Zhou G-W, Guo M-L, Cai L, Lian J-S, Qian P-Y, Huang H (2019) Diurnally fluctuating pCO2 modifies the physiological responses of coral recruits under ocean acidification. Front Physiol. https://doi.org/10.3389/fphys.2018.01952

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jiang L, Guo M-L, Zhang F, Zhang Y-Y, Zhou G-W, Lei X-M, Yuan X-C, Sun Y-F, Yuan T, Cai L, Lian J-S, Liu S, Qian P-Y, Huang H (2020) Impacts of elevated temperature and pCO2 on the brooded larvae of Pocillopora damicornis from Luhuitou Reef, China: evidence for local acclimatization. Coral Reefs 39(2):331–344

    Article  Google Scholar 

  55. Kwok CK, Lam KY, Leung SM, Chui APY, Ang PO (2016) Copper and thermal perturbations on the early life processes of the hard coral Platygyra acuta. Coral Reefs 35(3):827–838

    Article  Google Scholar 

  56. LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570-2580.e2576

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Lajeunesse T, Trench R (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134

    CAS  PubMed  Article  Google Scholar 

  58. Lewis E, Wallace D, Allison LJ (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Tennessee

  59. Li X, Liu S, Huang H, Huang L, Jing Z, Zhang C (2012) Coral bleaching caused by an abnormal water temperature rise at Luhuitou fringing reef, Sanya Bay, China. Aquat Ecosyst Health Manage 15:227–233

    CAS  Article  Google Scholar 

  60. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Bio Ecol 364:48–53

    Article  Google Scholar 

  62. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  63. Mauricio R-L, Dave AK, Virginia MW (2004) Distinct ITS types of Symbiodinium in Clade C correlate with cnidarian/dinoflagellate specificity during onset of symbiosis. Mar Ecol Prog Ser 275:97–102

    Article  Google Scholar 

  64. McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2:623–627

    CAS  Article  Google Scholar 

  65. McIlroy SE, Coffroth MA (2017) Coral ontogeny affects early symbiont acquisition in laboratory-reared recruits. Coral Reefs 36:927–932

    Article  Google Scholar 

  66. McIlroy SE, Gillette P, Cunning R, Klueter A, Capo T, Baker AC, Coffroth MA (2016) The effects of Symbiodinium (Pyrrhophyta) identity on growth, survivorship, and thermal tolerance of newly settled coral recruits. J Phycol 52:1114–1124

    CAS  PubMed  Article  Google Scholar 

  67. Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA, Willis BL, van Oppen MJH (2009) The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4:e6364

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. Mohamed AR, Cumbo V, Harii S, Shinzato C, Chan CX, Ragan MA, Bourne DG, Willis BL, Ball EE, Satoh N, Miller DJ (2016) The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol Ecol 25:3127–3141

    CAS  PubMed  Article  Google Scholar 

  69. Mohamed AR, Andrade N, Moya A, Chan CX, Negri AP, Bourne DG, Ying H, Ball EE, Miller DJ (2020) Dual RNA-sequencing analyses of a coral and its native symbiont during the establishment of symbiosis. Mol Ecol 00:1–17

    Google Scholar 

  70. Nitschke MR, Davy SK, Ward S (2016) Horizontal transmission of Symbiodinium cells between adult and juvenile corals is aided by benthic sediment. Coral Reefs 35:335–344

    Article  Google Scholar 

  71. Nitschke MR, Craveiro SC, Brandão C, Fidalgo C, Serôdio J, Calado AJ, Frommlet JC (2020) Description of Freudenthalidium gen. nov. and Halluxium gen. nov. to formally recognize clades Fr3 and H as genera in the family Symbiodiniaceae (Dinophyceae). J Phycol 56:923–940

    CAS  PubMed  Article  Google Scholar 

  72. Pitts KA, Campbell JE, Figueiredo J, Fogarty ND (2020) Ocean acidification partially mitigates the negative effects of warming on the recruitment of the coral, Orbicella faveolata. Coral Reefs 39:281–292

    Article  Google Scholar 

  73. Poland DM, Coffroth MA (2017) Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs 36:119–129

    Article  Google Scholar 

  74. Putnam HM, Mayfield AB, Fan TY, Chen CS, Gates RD (2013) The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2. Mar Biol 160:2157–2173

    CAS  Article  Google Scholar 

  75. Quigley KM, Bay LK, Willis BL (2017) Temperature and water quality-related patterns in sediment-associated symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus acropora. Front Mar Sci. https://doi.org/10.3389/fmars.2017.00401

    Article  Google Scholar 

  76. Quigley KM, Baker AC, Coffroth MA, Willis BL, van Oppen MJH (2018) Bleaching Resistance and the Role of Algal Endosymbionts. In: van Oppen MJH, Lough JM (eds) Coral Bleaching: Patterns, Processes, Causes and Consequences. Springer International Publishing, Cham, pp 111–151

    Chapter  Google Scholar 

  77. Ritson-Williams R, Arnold SN, Fogarty ND, Steneck RS, Vermeij MJA, Paul VJ (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contriburions to the Mar Sci 38:437–457

    Article  Google Scholar 

  78. Rivest EB, Hofmann GE (2013) Responses of the metabolism of the larvae of Pocillopora damicornis to ocean acidification and warming. PLoS ONE 9:77–92

    Google Scholar 

  79. Rivest EB, Hofmann GE (2015) Effects of temperature and pCO2 on lipid use and biological parameters of planulae of Pocillopora damicornis. J Exp Mar Bio Ecol 473:43–52

    CAS  Article  Google Scholar 

  80. Schnitzler C, Hollingsworth L, Krupp D, Weis V (2012) Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria. Mar Biol 159:633–642

    Article  Google Scholar 

  81. Siebeck U, Marshall N, Klüter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching using a colour reference card. Coral Reefs 25:453–460

    Article  Google Scholar 

  82. Sun Y-F, Jiang L, Gong S-Q, Guo M-L, Yuan X-C, Zhou G-W, Lei X-M, Zhang Y-Y, Sun Y-F, Yuan T, Lian J-S, Qian P-Y, Huang H (2020) Impact of ocean warming and acidification on symbiosis establishment and gene expression profiles in recruits of reef coral Acropora intermedia. Front Microbiol 11:532447

    PubMed  PubMed Central  Article  Google Scholar 

  83. Suwa R, Nakamura M, Morita M, Shimada K, Iguchi A, Sakai K, Suzuki A (2010) Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora). Fish Sci 76:93–99

    CAS  Article  Google Scholar 

  84. Suzuki G, Yamashita H, Kai S, Hayashibara T, Suzuki K, Iehisa Y, Okada W, Ando W, Komori T (2013) Early uptake of specific symbionts enhances the post-settlement survival of Acropora corals. Mar Ecol Prog Ser 494:149–158

    Article  Google Scholar 

  85. Tong H, Cai L, Zhou G, Yuan T, Zhang W, Tian R, Huang H, Qian P-Y (2017) Temperature shapes coral-algal symbiosis in the south China sea. Sci Rep 7:40118

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press

    Google Scholar 

  87. Weis VM, Reynolds WS, deBoer MD, Krupp DA (2001) Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs 20:301–308

    Article  Google Scholar 

  88. Williamson OM, Allen CE, Williams DE, Johnson MW, Miller MW, Baker AC (2021) Neighboring colonies influence uptake of thermotolerant endosymbionts in threatened Caribbean coral recruits. Coral Reefs 38:1

    Google Scholar 

  89. Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112

    CAS  Article  Google Scholar 

  90. Yamashita H, Suzuki G, Hayashibara T, Koike K (2013) Acropora recruits harbor “rare” Symbiodinium in the environmental pool. Coral Reefs 32:355–366

    Article  Google Scholar 

  91. Yamashita H, Suzuki G, Kai S, Hayashibara T, Koike K (2014) Establishment of coral-algal symbiosis requires attraction and selection. PLoS ONE 9:e97003

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. Yorifuji M, Harii S, Nakamura R, Fudo M (2017) Shift of symbiont communities in Acropora tenuis juveniles under heat stress. PeerJ 5:e4055

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. Yuyama I, Higuchi T (2014) Comparing the effects of symbiotic algae (Symbiodinium) clades C1 and D on early growth stages of Acropora tenuis. PLoS ONE 9:e98999

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Yuyama I, Nakamura T, Higuchi T, Hidaka M (2016) Different stress tolerances of juveniles of the coral Acropora tenuis associated with clades C1 and D Symbiodinium. Zoological Studies 55:19–19

    Google Scholar 

  95. Zhang C, Huang H, Ye C, Huang L, Li X, Lian J, Liu S (2013) Diurnal and seasonal variations of carbonate system parameters on Luhuitou fringing reef, Sanya Bay, Hainan Island, South China Sea. Deep Sea Res Part II 96:65–74

    CAS  Article  Google Scholar 

  96. Zhou G, Cai L, Li Y, Tong H, Jiang L, Zhang Y, Lei X, Guo M, Liu S, Qian P-Y, Huang H (2017) Temperature-Driven Local Acclimatization of Symbiodnium Hosted by the Coral Galaxea fascicularis at Hainan Island. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02487

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ziegler M, Arif C, Burt JA, Dobretsov S, Roder C, LaJeunesse TC, Voolstra CR (2017) Biogeography and molecular diversity of coral symbionts in the genus symbiodinium around the arabian peninsula. J Biogeogr 44:674–686

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (41876192 and 41976120), Guangdong Basic and Applied Basic Research Foundation (2019A1515011532 and 2019A1515111045), Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (ISEE2018PY01), Key Special Project for Introduced Talent Teams of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0404) and Science and Technology Planning Project of Guangdong Province, China (2020B1212060058). We are deeply grateful to the staff of Tropical Marine Biological Research Station in Hainan for their logistical support. We are grateful for the reviewers for their valuable and constructive comments which vastly improved the manuscript.

Author information

Affiliations

Authors

Contributions

LJ, GWZ, and HH conceived and designed the experiments; LJ, GWZ, and YYZ performed the experiments; XML, TY, MLG, XCY, JSL, and SL contributed to analysis and materials. LJ and GWZ analyzed the data and wrote the manuscript. All authors commented on the draft and gave final consent for publication.

Corresponding authors

Correspondence to Guo-Wei Zhou or Hui Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Anastazia Teresa Banaszak

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 69 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Zhou, GW., Zhang, YY. et al. Plasticity of symbiont acquisition in new recruits of the massive coral Platygyra daedalea under ocean warming and acidification. Coral Reefs 40, 1563–1576 (2021). https://doi.org/10.1007/s00338-021-02151-5

Download citation

Keywords

  • Symbiosis plasticity
  • Platygyra daedalea
  • Symbiodiniaceae
  • Ocean warming
  • Ocean acidification