Skip to main content

Advertisement

Log in

Neighboring colonies influence uptake of thermotolerant endosymbionts in threatened Caribbean coral recruits

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Intervention strategies to enhance coral resilience include manipulating associations with algal endosymbionts. While hosting thermotolerant Durusdinium trenchii can increase bleaching thresholds in Caribbean coral adults, its effects remain largely unknown during their early life stages. Here, we tested if Orbicella faveolata recruits could establish symbiosis with D. trenchii supplied by nearby “donor” colonies and examined the resulting ecological trade-offs to evaluate early Symbiodiniaceae manipulation as a scalable tool for reef restoration. We exposed aposymbiotic recruits to 29 °C or 31 °C and to fragments of Montastraea cavernosa (containing Cladocopium ITS2 type C3) or Siderastrea siderea (containing D. trenchii). After 60 days, recruits reared with D. trenchii donors hosted nearly three times more D. trenchii than those with Cladocopium donors, suggesting that recruits can acquire Symbiodiniaceae from nearby corals of different species. Temperature did not affect symbiont identity. Next, donor colonies were removed and surviving recruits were maintained for three months at ambient temperatures, after which a subset was exposed to a 60-day heat stress. Recruits previously reared at 31 °C survived twice as long at 34 °C as those reared at 29 °C, suggesting that pre-exposure to heat can prime recruits to withstand future thermal stress. Furthermore, recruits hosting primarily D. trenchii survived twice as long at 34 °C as those hosting little or no D. trenchii. However, the proportion of D. trenchii hosted was negatively correlated with polyp size and symbiont density, indicating a trade-off between growth (of both host and symbiont) and heat tolerance. These findings suggest that, while donor colonies may be effective sources for seeding coral recruits with thermotolerant symbionts, practitioners will need to balance the likely benefits and costs of these approaches when designing restoration strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc Biol Sci 275:2273–2282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abrego D, van Oppen MJH, Willis BL (2009) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3532–3543

    Article  PubMed  Google Scholar 

  • Abrego D, Willis BL, van Oppen MJH (2012) Impact of light and temperature on the uptake of algal symbionts by coral juveniles. PLoS ONE 7:e50311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali A, Kriefall NG, Emery LE, Kenkel CD, Matz MV, Davies SW (2019) Recruit symbiosis establishment and Symbiodiniaceae composition influenced by adult corals and reef sediment. Coral Reefs 38:1–11

    Article  Google Scholar 

  • Baker AC (2001) Ecosystems: reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  PubMed  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC, Cunning R (2016) Bulk gDNA extraction from coral samples. protocols.io

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741–741

    Article  CAS  PubMed  Google Scholar 

  • Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA, Kuffner IB, LaJeunesse TC, Matz MV, Miller MW, Parkinson JE, Shantz AA (2019) Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol Appl 29:1–23

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc Biol Sci 273:2305–2312

    PubMed  PubMed Central  Google Scholar 

  • Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM, van Oppen MJH (2016) Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J 10:2693–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism: a testable hypothesis. Bioscience 43:320–326

    Article  Google Scholar 

  • Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414

    Article  Google Scholar 

  • Chamberland VF, Snowden S, Marhaver KL, Petersen D, Vermeij MJA (2017) The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae). Coral Reefs 36:83–94

    Article  Google Scholar 

  • Coffroth MA, Santos S, Goulet T (2001) Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Mar Ecol Prog Ser 222:85–96

    Article  Google Scholar 

  • Coffroth MA, Lewis CF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16:R985–R987

    Article  CAS  PubMed  Google Scholar 

  • Cumbo V, Baird AH, van Oppen MJH (2013) The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32:11–120

    Article  Google Scholar 

  • Cumbo V, van Oppen MJH, Baird A (2018) Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Mar Ecol Prog Ser 587:117–127

    Article  CAS  Google Scholar 

  • Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:259–262

    Article  Google Scholar 

  • Cunning R, Silverstein RN, Baker AC (2015) Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc Biol Sci 282:20141725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunning R, Ritson-Williams R, Gates RD (2016) Patterns of bleaching and recovery of Montipora capitata in Kāne‘ohe Bay, Hawai‘i, USA. Mar Ecol Prog Ser 551:131–139

    Article  CAS  Google Scholar 

  • Cunning R, Silverstein RN, Baker AC (2018) Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs 37:145–152

    Article  Google Scholar 

  • Doropoulos C, Ward S, Marshell A, Diaz-Pulido G, Mumby PJ (2012) Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholds. Ecology 93:2131–2138

    Article  PubMed  Google Scholar 

  • Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    Article  CAS  PubMed  Google Scholar 

  • Fisch J, Drury C, Towle EK, Winter RN, Miller MW (2019) Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38:863–876

    Article  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne R (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1:274–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, McGinley M, Matsui Y (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Change Biol 20:3823–3833

    Article  Google Scholar 

  • Hadfield MG (2011) Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann Rev Mar Sci 3:453–470

    Article  PubMed  Google Scholar 

  • Hagedorn M, Carter VL, Leong JC, Borneman EH, Petersen D, Laterveer M, Schick M (2009) Ex situ culture of Caribbean and Pacific coral larvae comparing various flow-through chambers. Smithson Contrib Mar Sci 38:259–267

    Google Scholar 

  • Hauff B, Haslun JA, Strychar KB, Ostrom PH, Cervino JM (2016) Symbiont diversity of zooxanthellae (Symbiodinium spp.) in Porities astreoides and Montastraea cavernosa from a reciprocal transplant in the lower Florida Keys. Int J Biol 8:9–22

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 3181:737–1742

    Google Scholar 

  • Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr 44:932–940

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • Hume BCC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:1–8

    Article  CAS  Google Scholar 

  • Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, Voolstra CR (2019) SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Res 19:1063–1080

    Article  CAS  Google Scholar 

  • Jones AM, Berkelmans R (2010) Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE 5:1–9

  • Jones AM, Berkelmans R (2011) Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. J Mar Biol 2011:1–12

    Article  Google Scholar 

  • Jones RJ, Yellowlees D (1997) Regulation and control of intracellular algae (= zooxanthellae) in hard corals. Philos Trans R Soc Lond Ser B Biol Sci 352:457–468

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kemp DW, Hernandez-Pech X, Iglesias-Prieto R, Fitt WK, Schmidt GW (2014) Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnol Oceanogr 59:788–797

    Article  CAS  Google Scholar 

  • Kemp DW, Thornhill DJ, Rotjan RD, Iglesias-Prieto R, Fitt WK, Schmidt GW (2015) Spatially distinct and regionally endemic Symbiodinium assemblages in the threatened Caribbean reef-building coral Orbicella faveolata. Coral Reefs 34:535–547

    Article  Google Scholar 

  • Kennedy EV, Foster NL, Mumby PJ, Stevens JR (2015) Widespread prevalence of cryptic Symbiodinium D in the key Caribbean reef builder, Orbicella annularis. Coral Reefs 34:519–531

    Article  Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62

    Article  PubMed  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc Lond B Biol Sci 276:4139–4148

    Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown BE, Obura D, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570-2580.e6

    Article  CAS  PubMed  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Manzello DP, Matz MV, Enochs IC, Valentino L, Carlton RD, Kolodziej G, Jankulak M (2018) Role of host genetics and heat tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob Change Biol 25:1016–1031

  • McIlroy SE, Coffroth MA (2017) Coral ontogeny affects early symbiont acquisition in laboratory-reared recruits. Coral Reefs 36:927–932

    Article  Google Scholar 

  • McIlroy SE, Gillette P, Cunning R, Klueter A, Capo T, Baker AC, Coffroth MA (2016) The effects of Symbiodinium (Pyrrhophyta) identity on growth, survivorship, and thermal tolerance of newly settled coral recruits. J Phycol 52:1114–1124

    Article  CAS  PubMed  Google Scholar 

  • Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA, Willis BL, van Oppen MJH (2009) The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4:1–12

  • Miller MW, Baums IB, Pausch RE, Bright AJ, Cameron CM, Williams DE, Woodley CM (2018) Clonal structure and variable fertilization success in Florida Keys broadcast-spawning corals. Coral Reefs 37:239–249

    Article  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (2019) A research review of interventions to increase the persistence and resilience of coral reefs. The National Academies Press, Washington, DC

    Google Scholar 

  • Nitschke MR, Davy SK, Ward S (2016) Horizontal transmission of Symbiodinium cells between adult and juvenile corals is aided by benthic sediment. Coral Reefs 35:335–344

    Article  Google Scholar 

  • Ortiz JC, González-Rivero M, Mumby PJ (2013) Can a thermally tolerant symbiont improve the future of Caribbean coral reefs? Glob Change Biol 19:273–281

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Pettay DT, Wham DC, Smith RT, Iglesias-Prieto R, LaJeunesse TC (2015) Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc Nat Acad Sci 112:7513–7518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland DM, Coffroth MA (2017) Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs 36:119–129

    Article  Google Scholar 

  • Pollock JF, Katz SM, van de Water JAJM, Davies SW, Hein M, Torda G, Willis BL (2017) Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis. PeerJ 5:1–21

  • Poquita-Du RC, Huang D, Chou LM, Todd PA (2020) The contribution of stress-tolerant endosymbiotic dinoflagellate Durusdinium to Pocillopora acuta survival in a highly urbanized reef system. Coral Reefs 39:745–755

    Article  Google Scholar 

  • Quigley KM, Bay LK, Willis BL (2017a) Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus Acropora. Front Mar Sci 4:1–17

  • Quigley KM, Willis BL, Bay LK (2017b) Heritability of the Symbiodinium community in vertically-and horizontally-transmitting broadcast spawning corals. Sci Rep 7:1–4

    Article  CAS  Google Scholar 

  • Quigley KM, Torda G, Bay LK (2018) The use of larvae or recruits in coral restoration initiatives: Symbiodinium acquisition does not differ between coral life stages in the wild. Restor Ecol 26:422–425

    Article  Google Scholar 

  • Quigley KM, Randall CJ, van Oppen MJH, Bay LK (2020) Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol Open 9:1–11

  • Randall C, Negri A, Quigley KM, Foster T, Ricardo G, Webster N, Heyward A (2020) Sexual production of corals for reef restoration in the Anthropocene. Mar Ecol Prog Ser 635:203–232

    Article  Google Scholar 

  • Raymundo LJ, Maypa AP (2004) Getting bigger faster: mediation of size-specific mortality via fusion in juvenile coral transplants. Ecol Appl 14:281–295

    Article  Google Scholar 

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742–742

    Article  CAS  PubMed  Google Scholar 

  • Rowan B, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Nat Acad Sci 92:2850–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowan R, Powers DA (1991) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    Article  CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker AC, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  CAS  PubMed  Google Scholar 

  • Silverstein RN, Correa AMS, Baker AC (2012) Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. Proc R Soc Lond B Biol Sci 279:2609–2618

  • Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Change Biol 21:236–249

    Article  Google Scholar 

  • Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Nat Acad Sci 105:9256–9261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain TD, Chandler J, Backman V, Marcelino L (2017) Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct Ecol 31:172–183

    Article  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Thornhill DJ, Xiang Y, Fitt WK, Santos SR (2009) Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS ONE 4:e6262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373

    Article  CAS  PubMed  Google Scholar 

  • van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Change Biol 20:103–112

    Article  Google Scholar 

  • Vermeij MJA, Sandin SA (2008) Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89:1994–2004

    Article  PubMed  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Weis VM, Reynolds WS, DeBoer MD, Krupp DA (2001) Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs 20:301–308

    Article  Google Scholar 

  • Wells S, Ravilious C, Corcoran E (2006) In the front line: shoreline protection and other ecosystem services from mangroves and coral reefs, UNEP world conservation monitoring centre, Cambridge, United Kingdom

  • Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, van Woesik R (2011) Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res 62:205

    Article  CAS  Google Scholar 

  • Yuyama I, Higuchi T (2014) Comparing the effects of symbiotic algae (Symbiodinium) clades C1 and D on early growth stages of Acropora tenuis. PLoS ONE 9:1–6

Download references

Acknowledgements

Fieldwork was conducted under permit FKNMS-2016-047-A1. The authors thank A. Peterson and A. Bright for support during coral spawning dives, and for rearing O. faveolata larvae prior to settlement. OW thanks M. Schmale for use of his dissecting microscope to sample recruits, R. Cunning for ITS2 amplicon sequencing and support with data analysis, and R. van Hooidonk for calculating sea surface temperature MMM’s using Pathfinder 5.0 and Coral Reef Watch. Funding sources: CIMAS Fellowship and B. Kirtman, NOAA Task III (to M. Johnson and A. Baker)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia M. Williamson.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Simon Davy

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williamson, O.M., Allen, C.E., Williams, D.E. et al. Neighboring colonies influence uptake of thermotolerant endosymbionts in threatened Caribbean coral recruits. Coral Reefs 40, 867–879 (2021). https://doi.org/10.1007/s00338-021-02090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02090-1

Keywords

Navigation