Skip to main content

Phylogeography, population connectivity and demographic history of the Stoplight parrotfish, Sparisoma viride (Teleostei: Labridae), in the Greater Caribbean

Abstract

Few genetic studies that provide biological, ecological and evolutionary information have been conducted for parrotfishes, including Sparisoma viride, and none has covered the full geographic range of this species. Here, we examine the genetic patterns of the Stoplight parrotfish (S. viride) in the Greater Caribbean and its relationship with the recognized biogeographic provinces in the region. Phylogeographic, population and coalescent analyses were performed to examine the genetic structure and connectivity of S. viride populations throughout its entire range within the Greater Caribbean. Two mitochondrial (control region and coxI) and one nuclear (RHO) markers were used. The Stoplight parrotfish shows high haplotypic diversity (h) and low nucleotide diversity (π) in the control region, and low genetic diversity in coxI and RHO. No evidence of genetic structure was found, indicating a panmictic population throughout the Greater Caribbean with highly symmetrical migration rates among previously defined Caribbean biogeographic provinces. The demographic history estimates indicate events of bottlenecks followed by a population expansion dated at 80,000 years ago (kya) during the Pleistocene epoch. These results suggest that the contrasting environmental conditions that define the Greater Caribbean provinces are not barriers to gene flow for S. viride. The phylogeographic patterns of Stoplight parrotfish could be associated with the biological characteristics of the species (such as extensive pelagic larval duration and use of multiple habitats), historical demographic events and physical conditions of the Greater Caribbean, promoting the genetic homogeneity of the species in the region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Allsop DJ, West SA (2004) Sex-ratio evolution in sex changing animals. Evolution 58:1019–1027

    PubMed  Article  Google Scholar 

  • Bagley MJ, Lindquist DG, Geller JB (1999) Microsatellite variation, effective population size, and population genetic structure of vermilion snapper, Rhomboplites aurorubens, off the southeastern USA. Mar Biol 134:609–620

    CAS  Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Article  Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG (1990) U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature 346:456–458

    CAS  Article  Google Scholar 

  • Bay LK, Choat JH, van Herwerden L, Robertson DR (2004) High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past? Mar Biol 144:757–767

    CAS  Article  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98:4563–4568

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bellwood DR, Wainwright PC (2003) The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral reef fishes: dynamics and diversity on a complex ecosystem. Academic Press, New York, pp 5–32

    Google Scholar 

  • Blanchon P, Eisenhauer A, Fietzke J, Liebetrau V (2009) Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand. Nature 458:881–885

    CAS  PubMed  Article  Google Scholar 

  • Böhlke JE, Chaplin CCG (1993) Fishes of the Bahamas and adjacent tropical waters. University of Texas Press, Austin

    Google Scholar 

  • Bonhomme F, Planes S (2000) Some evolutionary arguments about what maintains the pelagic interval in reef fishes. Environ Biol Fishes 59:365–383

    Article  Google Scholar 

  • Bowen BW, Muss A, Rocha LA, Grant WS (2006a) Shallow mtDNA coalescence in Atlantic Pygmy Angelfishes (Genus Centropyge) indicates a recent invasion from the Indian Ocean. J Hered 97:1–12

    CAS  PubMed  Article  Google Scholar 

  • Bowen BW, Bass AL, Muss A, Carlin J, Robertson DR (2006b) Phylogeography of two Atlantic squirrelfishes (Family Holocentridae): exploring links between pelagic larval duration and population connectivity. Mar Biol 149:899–913

    Article  Google Scholar 

  • Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc Biol Sci 275:1803–1809

    PubMed  PubMed Central  Google Scholar 

  • Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distribution. J Biogeogr 39:12–30

    Article  Google Scholar 

  • Bruggemann JH, van Oppen MJ, Breeman AM (1994a) Foraging by the stoplight parrotfish Sparisoma viride. I. Food selection in different, socially determined habitats. Mar Ecol Prog Ser 106:41

    Article  Google Scholar 

  • Bruggemann JH, Kuyper MWM, Breeman AM (1994b) Comparative analysis of foraging and habitat use by the sympatric Caribbean parrotfish Scarus vetula and Sparisoma viride (Scaridae). Mar Ecol Prog Ser 112:51–66

    Article  Google Scholar 

  • Choat JH, Robertson DR, Ackerman JL, Posada JM (2003) An age-based demographic analysis of the Caribbean stoplight parrotfish Sparisoma viride. Mar Ecol Prog Ser 246:265–277

    Article  Google Scholar 

  • Chopelet J, Waples RS, Mariani S (2009) Sex change and the genetic structure of marine fish populations. Fish Fish 10:329–343

    Article  Google Scholar 

  • Cowman PF, Bellwood DR (2013) Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft barriers. Proc Biol Sci 280:20131541

    PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Delrieu-Trottin E, Mona S, Maynard J, Neglia V, Veuille M, Planes S (2017) Population expansions dominate demographic histories of endemic and widespread Pacific reef fishes. Sci Rep 7:40519

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • DiBattista JD, Rocha LA, Craig MT, Feldheim KA, Bowen BW (2012) Phylogeography of two closely related Indo-Pacific butterfly fishes reveals divergent evolutionary histories and discordant results from mtDNA and microsatellites. J Hered 103:617–629

    CAS  PubMed  Article  Google Scholar 

  • Dudgeon CL, Gust N, Blair D (2000) No apparent genetic basis to demographic differences in scarid fishes across continental shelf of the Great Barrier Reef. Mar Biol 137:1059–1066

    Article  Google Scholar 

  • Eggertsen L, Ferreira CEL, Fontoura L, Kautsky N, Gullström M, Berkström C (2017) Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape. Estuar Coast Shelf Sci 196:97–108

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Article  Google Scholar 

  • Eytan RI, Hellberg ME (2010) Nuclear and mitochondria sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes. Evolution 64:3380–3397

    CAS  PubMed  Article  Google Scholar 

  • Feitosa JLL, Ferreira BP (2014) Distribution and feeding patterns of juvenile parrotfish on algal-dominated coral reefs. Mar Ecol 2014:1–13

    Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gaines SD, White C, Carr MH, Palumbi SR (2010) Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci U S A 107:18286–18293

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gaither, MR, Bowen BW, Bordenave TR, Rocha LA, Newman SJ, Gomez JA, Craig MT (2011) Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the Indo-Pacific Barrier with contemporary overlap in the Coral Triangle. BMC Evol Biol 11:189

  • Geertjes GJ, Postema J, Kamping A, van Delden W, Videler JJ, van de Zande L (2004) Allozymes and RAPDs detect little genetic population substructuring in the Caribbean stoplight parrotfish Sparisoma viride. Mar Ecol Progr Ser 279:225–235

    CAS  Article  Google Scholar 

  • Grant WS (2015) Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. J Hered 106:333–346

    PubMed  Article  Google Scholar 

  • Green AL, Maypa AP, Almany GR, Rhodes KL, Weeks R, Abesamis RA, Gleason MA, Mumby PJ, White AT (2015) Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biological Reviews 90:1215–1247

    PubMed  Article  Google Scholar 

  • Greenstein BJ, Curran HA, Pandolfi JM (1998) Shifting ecological baseline and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a Pleistocene perspective. Coral Reefs 17:249–261

    Article  Google Scholar 

  • Gyllensten U (1985) The genetic structure of fish: differences in the intraspecific distribution of biochemical genetic variation between marine, anadromous and freshwater species. J Fish Biol 26:691–699

    Article  Google Scholar 

  • Haney RA, Silliman BR, Rand DM (2007) A multi-locus assessment of connectivity and historical demography in the bluehead wrasse (Thalassoma bifasciatum). J Hered 98:294–302

    CAS  Article  Google Scholar 

  • Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Hernández-Landa RC, Acosta-González G, Núñez-Lara E, Arias-González JE (2014) Spatial distribution of surgeonfish and parrotfish in the north sector of the Mesoamerican Barrier Reef System. Mar Ecol 36:432–446

    Article  Google Scholar 

  • Holstein DM, Paris CB, Mumby PJ (2014) Consistency and inconsistency in multispecies population network dynamics of coral reef ecosystems. Mar Ecol Prog Ser 499:1–18

    Article  Google Scholar 

  • Horne JB, van Herwerden L (2013) Long-term panmixia in a cosmopolitan Indo-Pacific coral reef fish and a nebulous genetic boundary with its broadly sympatric sister species. J Evol Biol 26:783–799

    CAS  PubMed  Article  Google Scholar 

  • Huson D, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    CAS  PubMed  Article  Google Scholar 

  • Jackson AM, Semmens BX, de Mitcheson YS, Nemeth RS, Heppell SA, Bush PG, Aguilar-Perera A, Claydon JAB, Calosso MC, Sealey KS, Schärer MT, Bernardi G (2014) Population structure and phylogeography in Nassau grouper (Epinephelus striatus), a mass-aggregating marine fish. PLoS One 9:e97508

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Jackson JB (1992) Pleistocene perspectives on coral reef community structure. Amer Zool 32:719–731

    Article  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. https://doi.org/10.1186/1471-2156-6-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804

    CAS  Article  Google Scholar 

  • Kazancioglu E, Near TJ, Hanel R, Wainwright PC (2009) Influence of sexual selection and feeding functional morphology on diversification rate of parrotfishes (Scaridae). Proc Biol Sci 276:3439–3446

    PubMed  PubMed Central  Google Scholar 

  • Keith P, Lord C, Lorion J, Watanabe S, Tsukamoto K, Couloux A, Dettai A (2011) Phylogeny and biogeography of Sicydiinae (Teleostei: Gobiidae) inferred from mitochondrial and nuclear genes. Mar Biol 158:311–326

    Article  Google Scholar 

  • Lessios HA (2008) The great american schism: divergence of marine organisms after the rise of the Central American isthmus. Annu Rev Ecol Evol Syst 39:63–91

    Article  Google Scholar 

  • Lessios HA, Robertson DR (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc Biol Sci 273:2201–2208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    CAS  PubMed  Article  Google Scholar 

  • Limborg MT, Helyar SJ, de Bruyn M, Taylor MI, Nielsen EE, Ogden R, Carvlaho GR, FPT Consortium, Bekkevold D (2012) Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol 21:3686–3703

    CAS  PubMed  Article  Google Scholar 

  • Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR (2012) Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc Biol Sci 279:1033–1040

    PubMed  Google Scholar 

  • Mach ME, Sbrocco EJ, Hice LA, Duffy TA, Conover DO, Barber PH (2011) Regional differentiation and post-glacial expansion of the Atlantic silverside, Menidia menidia, an annual fish with high dispersal potential. Mar Biol 158:515–530

    PubMed  Article  Google Scholar 

  • Marko PB, Hoffman JM, Emme SA, McGovern TM, Keever CC, Cox LN (2010) The ‘expansion–contraction’ model of Pleistocene biogeography: rocky shores suffer a sea change? Mol Ecol 19:146–169

    CAS  PubMed  Article  Google Scholar 

  • Matos-Caraballo D, Cartagena-Haddock M, Peña-Alvarado N (2005) Portrait of the fishery of Sparisoma viride and Sparisoma chrysopterum in Puerto Rico during 1988-2001. Proceedings of the Gulf and Caribbean Fisheries Institute 56:271–282

    Google Scholar 

  • McCusker MR, Bentzen P (2010) Historical influences dominate the population genetic structure of a sedentary marine fish, Atlantic wolffish (Anarhichas lupus), across the North Atlantic Ocean. Mol Ecol 19:4228–4241

    PubMed  Article  Google Scholar 

  • McManus JW, Polsenberg JF (2004) Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog Oceanogr 60:263–279

    Article  Google Scholar 

  • Messmer V, van Herwerden L, Munday PL, Jones GP (2005) Phylogeography of color polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef. Coral Reefs 24:392–402

    Article  Google Scholar 

  • Mora C, Sale PF (2002) Are populations of coral reef fish open or closed? Trends Ecol Evol 17:422–428

    Article  Google Scholar 

  • Mumby PJ (2006) The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecol Appl 16:747–769

    PubMed  Article  Google Scholar 

  • Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, Van’t Hof T, Den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar coast Shelf Sci 51:31–44

    Article  Google Scholar 

  • Palmerín-Serrano PN, Tavera J, Espinoza E, Angulo A, Martínez-Gómez JE, González-Acosta AF, Domínguez-Domínguez O (2020) Evolutionary history of the reef fish Anisotremus interruptus (Perciformes: Haemulidae) throughout the Tropical Eastern Pacific. J Zool Syst Evol Res 00:1–15

    Google Scholar 

  • Palumbi SR (2003) Populations genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Pelc RA, Warner RR, Gaines SD (2009) Geographical patterns of genetic structure in marine species with contrasting life histories. J Biogeogr 36:1881–1890

    Article  Google Scholar 

  • Picou-Gill M, Woodley J, Miller M, Sary Z, van Barneveld W, Vatcher S, Brown M (1996) Catch analysis at Discovery Bay, Jamaica: the status of an artisanal reef fishery. Proceedings of the Gulf and Caribbean Fisheries Institute 44:706–713

    Google Scholar 

  • Piñeros VJ, Gutiérrez-Rodríguez C (2017) Population genetic structure and connectivity in the widespread coral-reef fish Abudefduf saxatilis: the role of historic and contemporary factors. Coral Reefs 36:877–890

    Article  Google Scholar 

  • Puebla O, Bermingham E, Guichard F (2009) Estimating dispersal from genetic isolation by distance in a coral reef fish (Hypoplectrus puella). Ecology 90:3087–3098

    PubMed  Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. Vienna, Austria. R foundation for statistical computing. http://www.R-project.org/

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol syy032 https://doi.org/10.1093/sysbio/syy032

  • Ravago-Gotango RG, Juinio-Meñez MA (2010) Phylogeography of the mottled spinefoot Siganus fuscescnes: pleistocene divergence and limited genetic connectivity across the Philippine archipelago. Mol Ecol 19:4520–4534

    Article  Google Scholar 

  • Reinboth R (1968) Protogynie bei Papageifischen (Scaridae). Z Naturforsch 23:852–855

    CAS  Article  Google Scholar 

  • Riginos C, Victor BC (2001) Larval spatial distributions and other early life–history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proc Biol Sci 268:1931–1936

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Robertson DR, Cramer KL (2014) Defining and dividing the Greater Caribbean; insights from the biogeography of shorefishes. PLoS One 9:e102918

    PubMed  PubMed Central  Article  Google Scholar 

  • Robertson DR, van Tassell J (2015) Shore fish of the Greater Caribbean: online information system. Version 1.0. Smithsonian Tropical Research Institute. http://biogeodb.stri.si.edu/caribbean/es/pages

  • Robertson DR, Karg F, de Moura RL, Victor BC, Bernardi G (2006) Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes. Mol Phylogenet Evol 40:795–807

    PubMed  Article  Google Scholar 

  • Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Mol Ecol 11:243–251

    CAS  PubMed  Article  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc Biol Sci 272:573–579

    PubMed  PubMed Central  Article  Google Scholar 

  • Rocha LA, Choat JH, Clements KD, Russell B, Myers R, Lazuardi ME, Muljadi A, Pardede S, Rahardjo P (2012) Sparisoma viride. The IUCN red list of threatened species 2012: e.T190734A17779745

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis TJ (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O (2019) The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol 130:269–285

    CAS  PubMed  Article  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and population genetics of Caribbean reef fishes. Evolution 49:897–910

    PubMed  Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    CAS  PubMed  Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2013) MEGA7. Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    CAS  PubMed  Article  Google Scholar 

  • Taylor MS, Hellberg ME (2006) Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol Ecol 15:695–707

    CAS  PubMed  Article  Google Scholar 

  • Teske PR, Sandoval-Castilo J, Golla TR, Emami-Khoyi A, Tine M, von der Heyden S, Beheregaray LB (2019) Thermal selection drives biodiversity origination across the Atlantic/Indian Ocean Boundary. Proc Biol Sci 286:20182023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trucchi E, Gratton P, Whittington JD, Cristofari R, Maho YL, Stenseth NC, Le Bohec C (2014) King penguin demography since the last glaciation inferred from genome wide data. Proc Biol Sci 281:20140528

    PubMed  PubMed Central  Google Scholar 

  • van Rooij JM, de Jong E, Vaandrager F, Videler JJ (1996a) Resource and habitat sharing by the stoplight parrotfish, Sparisoma viride, a Caribbean reef herbivore. Environ Biol Fishes 47:81–91

    Article  Google Scholar 

  • van Rooij JM, Kok JP, Videler JJ (1996b) Local variability in population structure and density of the protogynous reef herbivore Sparisoma viride. Environ Biol Fishes 47:65–80

    Article  Google Scholar 

  • van Rooij JM, Videler JJ (1997) Mortality estimates from repeated visual censuses of a parrotfish (Sparisoma viride) population: demographic implications. Mar Biol 128:385–396

    Article  Google Scholar 

  • Villegas-Sánchez CA, Pérez-España H, Rivera-Madrid R, Salas-Monreal D, Arias-González JE (2014) Subtle genetic connectivity between Mexican Caribbean and south-western Gulf of Mexico reefs: the case of the bicolor damselfish, Stegastes partitus. Coral Reefs 33:241–251

    Article  Google Scholar 

  • Visram S, Yang MC, Pillay RM, Said S, Henriksson O, Grahn M, Chen CA (2010) Genetic connectivity and historical demography of the blue barred parrotfish (Scarus ghobban) in the western Indian Ocean. Mar Biol 157:1475–1487

    Article  Google Scholar 

  • Waples RS (1987) A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41:385–400

    PubMed  Article  Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12

    Article  Google Scholar 

  • Winters KL, van Herwerden L, Choat JH, Robertson DR (2010) Phylogeography of the Indo-Pacific parrotfish Scarus psittacus: isolation generates distinctive peripheral populations in two oceans. Mar Biol 157:1679–1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sabina I Lara, Juan C. Montero, Rodolfo Pérez and Antonio González for valuable comments on earlier versions of this work. Isaí Betancourt and Ana Berenice García Andrade for his help in the data analysis. Thanks to Carla Gutiérrez-Rodríguez for donation of biological samples. FJLP would like to thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for granting a master scholarship (435277). This work was partially supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT, Grant No. CB-240875) and Universidad Michoacana de San Nicolás de Hidalgo (CIC-2013-2017). Collection permission (CONAPESCA-PPF/DGOPA-262/17) was granted by the Mexican government. The collection of specimens from Alacranes Reef and Cayo Arcas (Campeche Bank, Mexico) was possible through the project “BDMY - Biodiversidad Marina de Yucatan” funded by the Harte Research Institute of Texas A&M University at Corpus Christi and by the Comisión Nacional para el conocimiento y uso de la Biodiversidad (CONABIO-NE018). Thanks to Quetzalli Hernández, Diana Ugalde and Tonali Garcia for the organization of the expeditions where the specimens were collected.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Domínguez-Domínguez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Peter Francis Cowman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 217 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loera-Padilla, F.J., Piñeros, V.J., Baldwin, C.C. et al. Phylogeography, population connectivity and demographic history of the Stoplight parrotfish, Sparisoma viride (Teleostei: Labridae), in the Greater Caribbean. Coral Reefs 41, 753–765 (2022). https://doi.org/10.1007/s00338-020-02036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-02036-z

Keywords

  • Biogeographical provinces
  • Environmental barriers
  • Genetic connectivity
  • Panmictic population
  • Reef fishes
  • Sudden demographic expansion