Skip to main content

Insights from extreme coral reefs in a changing world

Abstract

Coral reefs are one of the most biodiverse and economically important ecosystems in the world, but they are rapidly degrading due to the effects of global climate change and local anthropogenic stressors. Reef scientists are increasingly studying coral reefs that occur in marginal and extreme environments to understand how organisms respond to, and cope with, environmental stress, and to gain insight into how reef organisms may acclimate or adapt to future environmental change. To date, there have been more than 860 publications describing the biology and/or abiotic conditions of marginal and extreme reef environments, most of which were published within the past decade. These include systems characterized by unusually high, low, and/or variable temperatures (intertidal, lagoonal, high-latitude areas, and shallow seas), turbid or urban environments, acidified habitats, and mesophotic depth, and focus on reefs geographically spread throughout most of the tropics. The papers in this special issue of Coral Reefs, entitled Coral Reefs in a Changing World: Insights from Extremes, build on the growing body of literature on these unique and important ecosystems, providing a deeper understanding of the patterns and processes governing life in marginal reef systems, and the implications that these insights may have for the future of tropical coral reefs in our rapidly changing world.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Aeby GS, Howells E, Work T, Abrego D, Williams GJ, Wedding LM, Caldwell JM, Moritsch M, Burt JA (2020) Localized outbreaks of coral disease on Arabian reefs are linked to extreme temperatures and environmental stressors. Coral Reefs. https://doi.org/10.1007/s00338-020-01928-4

    Article  Google Scholar 

  • Al-Mansoori N, McParland D, Howells E, Bauman A, Burt JA (2019) Coral bioerosion on the marginal reefs of northeastern Arabia. Aquat Ecosyst Health Manag. https://doi.org/10.1080/14634988.1677204

    Article  Google Scholar 

  • Ateweberhan M, Bruggemann JH, Breeman AM (2006) Effects of extreme seasonality on community structure and functional group dynamics of coral reef algae in the southern Red Sea (Eritrea). Coral Reefs 25:391–406

    Google Scholar 

  • Au DWT, Pollino CA, Wu RSS, Shin PKS, Lau STF, Tang JYM (2004) Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper Epinephelus coioides. Mar Ecol Prog Ser 266:255–264

    CAS  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Google Scholar 

  • Banha TNS, Capel KCC, Kitahara MV, Francini-Filho RB, Francini CLB, Sumida PYG, Mies M (2019) Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs. https://doi.org/10.1007/s00338-019-01856-y

    Article  Google Scholar 

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proceedings of the National Academy of Sciences 110:1387–1392

    CAS  Google Scholar 

  • Bauman A, Feary D, Heron S, Pratchett MS, Burt J (2013a) Multiple environmental factors influence the spatial distribution and structure of reef communities in the northeastern Arabian Peninsula. Mar Pollut Bull 72:302–312

    CAS  PubMed  Google Scholar 

  • Bauman AG, Pratchett MS, Baird AH, Riegl B, Heron SF, Feary DA (2013b) Variation in the size structure of corals is related to environmental extremes in the Persian Gulf. Mar Environ Res 84:43–50

    CAS  PubMed  Google Scholar 

  • Bauman AG, Hoey AS, Dunshea G, Feary DA, Low J, Todd PA (2017) Macroalgal browsing on a heavily degraded, urbanized equatorial reef system. Scientific Reports 7:8352

    PubMed  PubMed Central  Google Scholar 

  • Bauman AG, Seah JCL, Januchowski-Hartley FA, Hoey AS, Fong J, Todd PA (2019) Fear effects associated with predator presence and habitat structure interact to alter herbivory on coral reefs. Biology Letters 15:20190409

    PubMed  Google Scholar 

  • Bay Rachael A, Palumbi Stephen R (2014) Multilocus adaptation associated with heat resistance in reef-building corals. Curr Biol 24:2952–2956

    CAS  PubMed  Google Scholar 

  • Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JEM, Khalil MT, Miyake S, Mughal MR, Spaet JLY, Saenz-Agudelo P (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32:737–748

    Google Scholar 

  • Brown NP, Forsman ZH, Tisthammer KT, Richmond RH (2020) A resilient brooding coral in the broadcast spawning Porites lobata species complex: a new endemic, introduced species, mutant, or new adaptive potential? Coral Reefs. https://doi.org/10.1007/s00338-020-01922-w

    Article  Google Scholar 

  • Browne N, Braoun C, McIlwain J, Nagarajan R, Zinke J (2019) Borneo coral reefs subject to high sediment loads show evidence of resilience to various environmental stressors. PeerJ 7:e7382

    PubMed  PubMed Central  Google Scholar 

  • Browne NK, Smithers SG, Perry CT (2010) Geomorphology and community structure of Middle Reef, central Great Barrier Reef, Australia: an inner-shelf turbid zone reef subject to episodic mortality events. Coral Reefs 29:683–689

    Google Scholar 

  • Browne NK, Tay JKL, Low J, Larson O, Todd PA (2015) Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality. Mar Environ Res 105:39–52

    CAS  PubMed  Google Scholar 

  • Buchanan JR, Krupp F, Burt JA, Feary DA, Ralph GM, Carpenter KE (2016) Living on the edge: Vulnerability of coral-dependent fishes in the Gulf. Mar Pollut Bull 105:480–488

    CAS  PubMed  Google Scholar 

  • Buchanan JR, Ralph GM, Krupp F, Harwell H, Abdallah M, Abdulqader E, Al-Husaini M, Bishop JM, Burt JA, Choat JH, Collette BB, Feary DA, Hartmann SA, Iwatsuki Y, Kaymaram F, Larson HK, Matsuura K, Motomura H, Munroe T, Russell B, Smith-Vaniz W, Williams J, Carpenter KE (2019) Regional extinction risks for marine bony fishes occurring in the Persian/Arabian Gulf. Biol Conserv 230:10–19

    Google Scholar 

  • Buckee J, Pattiaratchi C, Verduin J (2019) Partial mortality of intertidal corals due to seasonal daytime low water levels at the Houtman Abrolhos Islands. Coral Reefs. https://doi.org/10.1007/s00338-019-01887-5

    Article  Google Scholar 

  • Burt J (2013) The growth of coral reef science in the Gulf: A historical perspective. Mar Pollut Bull 72:289–301

    CAS  PubMed  Google Scholar 

  • Burt J (2014) The environmental costs of coastal urbanization in the Arabian Gulf. City: analysis of urban trends, culture, theory, policy, action 18:760–770

    Google Scholar 

  • Burt J, van Lavieren H, Feary D (2014) Persian Gulf reefs: an important asset for climate science in urgent need of protection. Ocean Challenge 20:49–56

    Google Scholar 

  • Burt J, Feary D, Bauman A, Usseglio P, Cavalcante G, Sale P (2011) Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J Mar Sci 68:1875–1883

    Google Scholar 

  • Burt JA, Bauman AG (2019) Suppressed coral settlement following mass bleaching in the southern Persian/Arabian Gulf. Aquat Ecosyst Health Manag. https://doi.org/10.1080/14634988.2019.1676024

    Article  Google Scholar 

  • Burt JA, Bartholomew A (2019) Towards more sustainable coastal development in the Arabian Gulf: Opportunities for ecological engineering in an urbanized seascape. Mar Pollut Bull 142:93–102

    CAS  PubMed  Google Scholar 

  • Burt JA, Killilea ME, Ciprut S (2019a) Coastal urbanization and environmental change: opportunities for collaborative education across a global network university. Reg Stud Mar Sci 26:100501

    Google Scholar 

  • Burt JA, Paparella F, Al-Mansoori N, Al-Mansoori A, Al-Jailani H (2019b) Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs 38:567–589

    Google Scholar 

  • Cacciapaglia C, Van Woesik R (2016) Climate-change refugia: shading reef corals by turbidity. Global Change Biology 22:1145–1154

    PubMed  Google Scholar 

  • Camp EF, Suggett DJ, Gendron G, Jompa J, Manfrino C, Smith DJ (2016) Mangrove and Seagrass Beds Provide Different Biogeochemical Services for Corals Threatened by Climate Change. Frontiers in Marine Science 3:52

    Google Scholar 

  • Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-Metalpa R, Smith DJ, Suggett DJ (2018) The Future of Coral Reefs Subject to Rapid Climate Change: Lessons from Natural Extreme Environments. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2018.00004

    Article  Google Scholar 

  • Camp EF, Edmondson J, Doheny A, Rumney J, Grima AJ, Huete A, Suggett DJ (2019) Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions. Mar Ecol Prog Ser 625:1–14

    CAS  Google Scholar 

  • Camp EF, Nitschke MR, Rodolfo-Metalpa R, Houlbreque F, Gardner SG, Smith DJ, Zampighi M, Suggett DJ (2017) Reef-building corals thrive within hot-acidified and deoxygenated waters. Scientific Reports 7:2434

    PubMed  PubMed Central  Google Scholar 

  • Camp EF, Suggett DJ, Pogoreutz C, Nitschke MR, Houlbreque F, Hume BCC, Gardner SG, Zampighi M, Rodolfo-Metalpa R, Voolstra CR (2020) Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment. Coral Reefs. https://doi.org/10.1007/s00338-019-01889-3

    Article  Google Scholar 

  • Carvalho S, Kürten B, Krokos G, Hoteit I, Ellis J (2019) The Red Sea. In: Sheppard C (ed) World Seas: An Environmental Evaluation. Elsevier, New York, pp 49–74

    Google Scholar 

  • Claereboudt MR (2019) Chapter 2: Oman. In: Sheppard C (ed) World Seas: an Environmental Evaluation, 2nd edn. Academic Press, London, pp 25–47

    Google Scholar 

  • Coles S, Brown B (2003) Coral bleaching—capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223

    CAS  PubMed  Google Scholar 

  • Craig P, Birkeland C, Belliveau S (2001) High temperatures tolerated by a diverse assemblage of shallow-water corals in American Samoa. Coral Reefs 20:185–189

    Google Scholar 

  • D’Agostino D, Burt JA, Reader T, Vaughan GO, Chapman BB, Santinelli V, Cavalcante GH, Feary DA (2019) The influence of thermal extremes on coral reef fish behaviour in the Arabian/Persian Gulf. Coral Reefs. https://doi.org/10.1101/654624

    Article  Google Scholar 

  • Death G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1208909109

    Article  Google Scholar 

  • DeMartini E, Jokiel P, Beets J, Stender Y, Storlazzi C, Minton D, Conklin E (2013) Terrigenous sediment impact on coral recruitment and growth affects the use of coral habitat by recruit parrotfishes (F. Scaridae). J Coast Conserv 17:417–429

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading Dead Zones and Consequences for Marine Ecosystems. Science 321:926–929

    CAS  PubMed  Google Scholar 

  • Enochs IC, Manzello DP, Kolodziej G, Noonan SHC, Valentino L, Fabricius KE (2016a) Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proceedings of the Royal Society B: Biological Sciences 283:20161742 283:20161742

    Google Scholar 

  • Enochs IC, Manzello DP, Tribollet A, Valentino L, Kolodziej G, Donham EM, Fitchett MD, Carlton R, Price NN (2016b) Elevated Colonization of Microborers at a Volcanically Acidified Coral Reef. PLOS ONE 11:e0159818

    PubMed  PubMed Central  Google Scholar 

  • Enochs IC, Formel N, Manzello D, Morris J, Mayfield AB, Boyd A, Kolodziej G, Adams G, Hendee J (2020) Coral persistence despite extreme periodic pH fluctuations at a volcanically acidified Caribbean reef. Coral Reefs. https://doi.org/10.1007/s00338-020-01927-5

    Article  Google Scholar 

  • Enochs IC, Manzello DP, Donham EM, Kolodziej G, Okano R, Johnston L, Young C, Iguel J, Edwards CB, Fox MD, Valentino L, Johnson S, Benavente D, Clark SJ, Carlton R, Burton T, Eynaud Y, Price NN (2015) Shift from coral to macroalgae dominance on a volcanically acidified reef. Nature Climate Change 5:1083–1088

    CAS  Google Scholar 

  • Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: A review. Mar Pollut Bull 64:1737–1765

    CAS  PubMed  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1:165–169

    CAS  Google Scholar 

  • Feary D, Burt JA, Bauman A, Usseglio P, Sale PF, Cavalcante G (2010) Fish communities on the world’s warmest reefs: What can they tell us about impacts of a climate change future? J Fish Biol 77:1931–1947

    CAS  PubMed  Google Scholar 

  • Field M, Cochran S, Logan J, Storlazzi C (2007) The coral reef of south Moloka’i, Hawai’i—Portrait of a sediment-threatened fringing reef. US Geological Survey Scientific Investigations Report 5101:159–164

    Google Scholar 

  • Figueroa-Pico J, Tortosa FS, Carpio AJ (2020) Coral fracture by derelict fishing gear affects the sustainability of the marginal reefs of Ecuador. Coral Reefs. https://doi.org/10.1007/s00338-020-01926-6

    Article  Google Scholar 

  • Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Global Change Biology 19:3640–3647

    PubMed  Google Scholar 

  • Frade PR, Bongaerts P, Englebert N, Rogers A, Gonzalez-Rivero M, Hoegh-Guldberg O (2018) Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nature Communications 9:3447

    PubMed  PubMed Central  Google Scholar 

  • Friedlander A, Aeby G, Brainard R, Clark A, DeMartini E, Godwin S, Ke J, Kosaki R, Maragos J, Vroom P (2005) The State of Coral Reef Ecosystems of the Main Hawaiin Islands The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States. National Oceanic and Atmospheric Administration, Washington

    Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-Term Region-Wide Declines in Caribbean Corals. Science 301:958–960

    CAS  PubMed  Google Scholar 

  • Glynn PW (1983) Extensive ‘Bleaching’ and Death of Reef Corals on the Pacific Coast of Panamá. Environ Conserv 10:149–154

    Google Scholar 

  • Glynn PW (1984) Widespread Coral Mortality and the 1982–83 El Niño Warming Event. Environ Conserv 11:133–146

    Google Scholar 

  • Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands. University of California Press, Berkeley

    Google Scholar 

  • Glynn PW, Manzello DP, Enochs IC (2016) Coral reefs of the eastern tropical Pacific: Persistence and loss in a dynamic environment. Springer, Netherlands

    Google Scholar 

  • Glynn PW, Feingold JS, Baker A, Banks S, Baums IB, Cole J, Colgan MW, Fong P, Glynn PJ, Keith I, Manzello D, Riegl B, Ruttenberg BI, Smith TB, Vera-Zambrano M (2018) State of corals and coral reefs of the Galápagos Islands (Ecuador): Past, present and future. Mar Pollut Bull 133:717–733

    CAS  PubMed  Google Scholar 

  • Gombos M, Komoto J, Lowry K, MacGowan P, Parsons T (2010) Hawai’i coral reef strategy: priorities for management in the main Hawaiian islands 2010–2020. The State of Hawaii, Honolulu

    Google Scholar 

  • Grigg RW, Maragos JE (1974) Recolonization of Hermatypic Corals on Submerged Lava Flows in Hawaii. Ecology 55:387–395

    Google Scholar 

  • Guest JR, Tun K, Low J, Vergés A, Marzinelli EM, Campbell AH, Bauman AG, Feary DA, Chou LM, Steinberg PD (2016a) 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Scientific Reports 6:36260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guest JR, Low J, Tun K, Wilson B, Ng C, Raingeard D, Ulstrup KE, Tanzil JTI, Todd PA, Toh TC, McDougald D, Chou LM, Steinberg PD (2016b) Coral community response to bleaching on a highly disturbed reef. Scientific Reports 6:20717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    CAS  PubMed  Google Scholar 

  • Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, Friess DA, Chou LM, Loke LHL, Saksena-Taylor P, Alsagoff N, Yeemin T, Sutthacheep M, Vo ST, Bos AR, Gumanao GS, Syed Hussein MA, Waheed Z, Lane DJW, Johan O, Kunzmann A, Jompa J, Suharsono Taira D, Bauman AG, Todd PA (2018) Urban coral reefs: Degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. Mar Pollut Bull 135:654–681

    CAS  PubMed  Google Scholar 

  • Hess S, Wenger AS, Ainsworth TD, Rummer JL (2015) Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome. Scientific Reports 5:10561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hess S, Prescott LJ, Hoey AS, McMahon SA, Wenger AS, Rummer JL (2017) Species-specific impacts of suspended sediments on gill structure and function in coral reef fishes. Proceedings of the Royal Society B: Biological Sciences 284:20171279

    PubMed  Google Scholar 

  • Hess S, Allan BJM, Hoey AS, Jarrold MD, Wenger AS, Rummer JL (2019) Enhanced fast-start performance and anti-predator behaviour in a coral reef fish in response to suspended sediment exposure. Coral Reefs 38:103–108

    Google Scholar 

  • Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral Reef Ecosystems under Climate Change and Ocean Acidification. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2017.00158

    Article  Google Scholar 

  • Hoey AS, Feary DA, Burt JA, Vaughan G, Pratchett MS, Berumen ML (2016a) Regional variation in the structure and function of parrotfishes on Arabian reefs. Mar Pollut Bull 105:524–531

    CAS  PubMed  Google Scholar 

  • Hoey AS, Howells E, Johansen JL, Hobbs J-PA, Messmer V, McCowan DM, Wilson SK, Pratchett MS (2016b) Recent advances in understanding the effects of climate change on coral reefs. Diversity 8:12–36

    Google Scholar 

  • Hoey A, Berumen M, Bonaldo R, Burt J, Feary D, Ferriera C, Floeter S, Nakamura Y (2018) The ecology of parrotfishes in marginal reef systems. In: Hoey A, Bonaldo R (eds) Biology of Parrotfishes. CRC Press, Boca Raton, pp 276–301. https://doi.org/10.1201/9781315118079-12

  • Holbrook NJ, Scannell HA, Sen Gupta A, Benthuysen JA, Feng M, Oliver ECJ, Alexander LV, Burrows MT, Donat MG, Hobday AJ, Moore PJ, Perkins-Kirkpatrick SE, Smale DA, Straub SC, Wernberg T (2019) A global assessment of marine heatwaves and their drivers. Nature Communications 10:2624

    PubMed  PubMed Central  Google Scholar 

  • Howells E, Vaughan G, Work T, Burt J, Abrego D (2020a) Annual outbreaks of coral disease coincide with extreme seasonal warming. Coral Reefs. https://doi.org/10.1007/s00338-020-01946-2

    Article  Google Scholar 

  • Howells EJ, Abrego D, Meyer E, Kirk NL, Burt JA (2016a) Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Global Change Biology 22:2702–2714

    PubMed  Google Scholar 

  • Howells EJ, Ketchum RN, Bauman AG, Mustafa Y, Watkins KD, Burt JA (2016b) Species-specific trends in the reproductive output of corals across environmental gradients and bleaching histories. Mar Pollut Bull 105:532–539

    CAS  PubMed  Google Scholar 

  • Howells EJ, Bauman AG, Vaughan GO, Hume BCC, Voolstra CR, Burt JA (2020b) Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol Ecol 29:899–911

    CAS  PubMed  Google Scholar 

  • Howells EJ, Dunshea G, McParland D, Vaughan GO, Heron SF, Pratchett MS, Burt JA, Bauman AG (2018) Species-specific coral calcification responses to the extreme environment of the southern Persian Gulf. Frontiers in Marine Science 5:1–13

    Google Scholar 

  • Hughes DJ, Alderdice R, Cooney C, Kühl M, Pernice M, Voolstra CR, Suggett DJ (2020) Coral reef survival under accelerating ocean deoxygenation. Nature Climate Change 10:296–307

    CAS  Google Scholar 

  • Hughes T, Rodrigues M, Bellwood D, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett M, Steneck R, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    CAS  PubMed  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017a) Coral reefs in the Anthropocene. Nature 546:82

    CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018a) Global warming transforms coral reef assemblages. Nature 556:492–496

    CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Chase TJ, Dietzel A, Hill T, Hoey AS, Hoogenboom MO, Jacobson M, Kerswell A, Madin JS, Mieog A, Paley AS, Pratchett MS, Torda G, Woods RM (2019) Global warming impairs stock-recruitment dynamics of corals. Nature 568:387–390

    CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018b) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-y, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017b) Global warming and recurrent mass bleaching of corals. Nature 543:373

    CAS  PubMed  Google Scholar 

  • Hume B, D’Angelo C, Smith E, Stevens J, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Scientific Reports 5:1–8

    Google Scholar 

  • Hume BCC, D’Angelo C, Burt JA, Wiedenmann J (2018) Fine-Scale Biogeographical Boundary Delineation and Sub-population Resolution in the Symbiodinium thermophilum Coral Symbiont Group From the Persian/Arabian Gulf and Gulf of Oman. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2018.00138

    Article  Google Scholar 

  • Hume BCC, Mejia-Restrepo A, Voolstra CR, Berumen ML (2020) Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs. https://doi.org/10.1007/s00338-020-01917-7

    Article  Google Scholar 

  • Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, Wiedenmann J, Voolstra CR (2019) SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Molecular Ecology Resources 19:1063–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue S, Kayanne H, Yamamoto S, Kurihara H (2013) Spatial community shift from hard to soft corals in acidified water. Nature Climate Change 3:683–687

    CAS  Google Scholar 

  • Januar HI, Zamani NP, Soedarma D, Chasanah E, Wright AD (2017) Tropical coral reef coral patterns in Indonesian shallow water areas close to underwater volcanic vents at Minahasa Seashore, and Mahengetang and Gunung Api Islands. Mar Ecol 38:e12415

    Google Scholar 

  • Januchowski-Hartley FA, Bauman AG, Morgan KM, Seah JCL, Huang D, Todd PA (2020) Accreting coral reefs in a highly urbanized environment. Coral Reefs. https://doi.org/10.1007/s00338-020-01953-3

    Article  Google Scholar 

  • Johansen JL, Allan BJM, Rummer JL, Esbaugh AJ (2017) Oil exposure disrupts early life-history stages of coral reef fishes via behavioural impairments. Nature Ecology and Evolution 1:1146–1152

    PubMed  Google Scholar 

  • Jokiel PL, Rodgers KS, Storlazzi CD, Field ME, Lager CV, Lager D (2014) Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Molokaʻi, Hawaiʻi. PeerJ 2:e699

    PubMed  PubMed Central  Google Scholar 

  • Kinsman DJJ (1964) Reef coral tolerance of high temperatures and salinities. Nature 202:1280–1282

    Google Scholar 

  • Kirk N, Howells E, Abrego D, Burt J, Meyer E (2018) Genomic and transcriptomic signals of thermal tolerance in heat-tolerant corals (Platygyra daedalea) of the Arabian/Persian Gulf. Mol Ecol 27:5180–5194

    CAS  PubMed  Google Scholar 

  • Kleypas JA, McManus J, Menez L (1999) Environmental Limits to Coral Reef Development: Where Do We Draw the Line? Am Zool 39:146–159

    Google Scholar 

  • Kroon FJ, Thorburn P, Schaffelke B, Whitten S (2016) Towards protecting the Great Barrier Reef from land-based pollution. Global Change Biology 22:1985–2002

    PubMed  Google Scholar 

  • Krueger T, Horwitz N, Bodin J, Giovani M-E, Escrig S, Meibom A, Fine M (2017) Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. Royal Society Open Science. https://doi.org/10.1098/rsos.170038

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafratta A, Fromont J, Speare P, Schönberg CHL (2017) Coral bleaching in turbid waters of north-western Australia. Mar Freshw Res 68:65–75

    Google Scholar 

  • Le Nohaïc M, Ross CL, Cornwall CE, Comeau S, Lowe R, McCulloch MT, Schoepf V (2017) Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Scientific Reports 7:14999

    PubMed  PubMed Central  Google Scholar 

  • Liew YJ, Howells EJ, Wang X, Michell CT, Burt JA, Idaghdour Y, Aranda M (2020) Intergenerational epigenetic inheritance in reef-building corals. Nature Climate Change. https://doi.org/10.1038/s41558-019-0687-2

    Article  Google Scholar 

  • Loya Y, Puglise K, Bridge T (2019) Mesophotic Coral Ecosystems. Springer, Netherlands

    Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Google Scholar 

  • Maina J, de Moel H, Zinke J, Madin J, McClanahan T, Vermaat JE (2013) Human deforestation outweighs future climate change impacts of sedimentation on coral reefs. Nature Communications 4:1986

    PubMed  PubMed Central  Google Scholar 

  • Mallela J, Roberts C, Harrod C, Goldspink CR (2007) Distributional patterns and community structure of Caribbean coral reef fishes within a river-impacted bay. J Fish Biol 70:523–537

    Google Scholar 

  • Manzello DP, Enochs IC, Melo N, Gledhill DK, Johns EM (2012) Ocean Acidification Refugia of the Florida Reef Tract. PLOS ONE 7:e41715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mora C, Sale PF (2011) Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea. Mar Ecol Prog Ser 434:251–266

    Google Scholar 

  • Morgan KM, Perry CT, Johnson JA, Smithers SG (2017) Nearshore Turbid-Zone Corals Exhibit High Bleaching Tolerance on the Great Barrier Reef Following the 2016 Ocean Warming Event. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2017.00224

    Article  Google Scholar 

  • Morgan KM, Perry CT, Smithers SG, Johnson JA, Daniell JJ (2016) Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings. Scientific Reports 6:29616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver TA, Palumbi SR (2011a) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440

    Google Scholar 

  • Oliver TA, Palumbi SR (2011b) Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30:241–250

    Google Scholar 

  • Oporto-Guerrero T, Reyes-Bonilla H, Ladah LB (2018) Presence of the reef-building coral, Porites panamensis, in a shallow hydrothermal field in the Gulf of California. Mar Biodiv 48:703–708

    Google Scholar 

  • Oprandi A, Montefalcone M, Morri C, Benelli F, Bianchi CN (2019) Water circulation, and not ocean acidification, affects coral recruitment and survival at shallow hydrothermal vents. Estuarine, Coastal and Shelf Science 217:158–164

    CAS  Google Scholar 

  • Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, Voolstra CR, Suggett DJ (2018) Thermal refugia against coral bleaching throughout the northern Red Sea. Global Change Biology 24:e474–e484

    PubMed  Google Scholar 

  • Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C, Sampayo EM, Warner ME, Smith DJ (2020) Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 8:8

    PubMed  PubMed Central  Google Scholar 

  • Pearce AF, Lenanton R, Jackson G, Moore J, Feng M, Gaughan D (2011) The “marine heat wave” off Western Australia during the summer of 2010/11. Fisheries Research Report No. 222. Department of Fisheries, Western Australia, Perth

  • Perry CT, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427–432

    Google Scholar 

  • Perry CT, Morgan KM (2017) Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Scientific Reports 7:40581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poquita-Du RC, Huang D, Chou LM, Todd PA (2020) The contribution of stress-tolerant endosymbiotic dinoflagellate Durusdinium to Pocillopora acuta survival in a highly urbanized reef system. Coral Reefs. https://doi.org/10.1007/s00338-020-01902-0

    Article  Google Scholar 

  • Pörtner H, Roberts D, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J, Rama B, Weyer N (2019) Intergovernmental Panel on Climate Change: Summary for Policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate

  • Pratchett MS, McWilliam MJ, Riegl B (2020) Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs. https://doi.org/10.1007/s00338-020-01936-4

    Article  Google Scholar 

  • Pratchett MS, Hoey AS, Feary DA, Bauman AG, Burt JA, Riegl BM (2013) Functional composition of Chaetodon butterflyfishes at a peripheral and extreme coral reef location, the Persian Gulf. Mar Pollut Bull 72:333–341

    CAS  PubMed  Google Scholar 

  • Richards ZT, Garcia RA, Wallace CC, Rosser NL, Muir PR (2015) A Diverse Assemblage of Reef Corals Thriving in a Dynamic Intertidal Reef Setting (Bonaparte Archipelago, Kimberley, Australia). PLOS ONE 10:e0117791

    PubMed  PubMed Central  Google Scholar 

  • Riegl B, Purkis S (2012) Coral reefs of the Gulf: adaptation to climatic extremes. Springer Science + Business Media B. V., Netherlands

    Google Scholar 

  • Riegl B, Bruckner A, Coles SL, Renaud P, Dodge RE (2009) Coral reefs: threats and conservation in an era of global change. Ann N Y Acad Sci 1162:136–186

    CAS  PubMed  Google Scholar 

  • Riegl B, Johnston M, Purkis S, Howells E, Burt J, Steiner S, Sheppard C, Bauman A (2018) Population collapse dynamics in Acropora downingi, an Arabian/Persian Gulf ecosystem-engineering coral, linked to rising temperature. Global Change Biology 24:2447–2462

    PubMed  Google Scholar 

  • Riegl BM, Benzoni F, Samimi-Namin K, Sheppard C (2012) The hermatypic scleractinian (hard) coral fauna of the Gulf. In: Riegl B, Purkis S (eds) Coral reefs of the Gulf: adaptation to climatic extremes. Springer Science + Business Media B. V., Berlin, pp 187–224

    Google Scholar 

  • Riegl BM, Purkis SJ, Al-Cibahy AS, Abdel-Moati MA, Hoegh-Guldberg O (2011) Present limits to heat-adaptability in corals and population-level responses to climate extremes. PLoS One 6:e24802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202

    Google Scholar 

  • Röthig T, Bravo H, Corley A, Prigge T-L, Chung A, Yu V, McIlroy SE, Bulling M, Sweet M, Baker DM (2020) Environmental flexibility in Oulastrea crispata in a highly urbanised environment: a microbial perspective. Coral Reefs. https://doi.org/10.1007/s00338-020-01938-2

    Article  Google Scholar 

  • Ruiz-Jones LJ, Palumbi SR (2017) Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. Science Advances 3:e1601298

    PubMed  PubMed Central  Google Scholar 

  • Safaie A, Silbiger NJ, McClanahan TR, Pawlak G, Barshis DJ, Hench JL, Rogers JS, Williams GJ, Davis KA (2018) High frequency temperature variability reduces the risk of coral bleaching. Nature Communications 9:1671

    PubMed  PubMed Central  Google Scholar 

  • Schleyer MH, Porter SN (2018) Drivers of Soft and Stony Coral Community Distribution on the High-Latitude Coral Reefs of South Africa. In: Sheppard C (ed) Adv Mar Biol. Academic Press, London, pp 1–55

    Google Scholar 

  • Schleyer MH, Floros C, Laing SCS, Macdonald AHH, Montoya-Maya PH, Morris T, Porter SN, Seré MG (2018) What can South African reefs tell us about the future of high-latitude coral systems? Mar Pollut Bull 136:491–507

    CAS  PubMed  Google Scholar 

  • Schoepf V, Stat M, Falter JL, McCulloch MT (2015) Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Scientific Reports 5:17639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semmler RF, Hoot WC, Reaka ML (2017) Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs 36:433–444

    Google Scholar 

  • Sheppard C, Price A, Roberts C (1992) Marine ecology of the Arabian region: patterns and processes in extreme tropical environments. Academic Press, Toronto

    Google Scholar 

  • Shraim R, Dieng MM, Vinu M, Vaughan G, McParland D, Idaghdour Y, Burt JA (2017) Environmental Extremes Are Associated with Dietary Patterns in Arabian Gulf Reef Fishes. Frontiers in Marine Science 4:1–14

    Google Scholar 

  • Smallhorn-West PF, Garvin JB, Slayback DA, DeCarlo TM, Gordon SE, Fitzgerald SH, Halafihi T, Jones GP, Bridge TCL (2019) Coral reef annihilation, persistence and recovery at Earth’s youngest volcanic island. Coral Reefs. https://doi.org/10.1007/s00338-019-01868-8

    Article  Google Scholar 

  • Smith E, Hume B, Delaney P, Wiedenmann J, Burt J (2017a) Genetic structure of coral-Symbiodinium symbioses on the world’s warmest reefs. PLoS One 12:1–12

    Google Scholar 

  • Smith E, Gurskaya A, Hume B, Voolstra C, Todd P, Bauman A, Burt J (2020) Low Symbiodiniaceae diversity in a turbid marginal reef environment. Coral Reefs. https://doi.org/10.1007/s00338-020-01956-0

    Article  Google Scholar 

  • Smith EG, Vaughan GO, Ketchum RN, McParland D, Burt JA (2017b) Symbiont community stability through severe coral bleaching in a thermally extreme lagoon. Scientific Reports 7:1–9

    Google Scholar 

  • Soares MdO (2020) Marginal reef paradox: A possible refuge from environmental changes? Ocean and Coastal Management 185:105063

    Google Scholar 

  • Starger CJ, Barber PH, Ambariyanto Baker AC (2010) The recovery of coral genetic diversity in the Sunda Strait following the 1883 eruption of Krakatau. Coral Reefs 29:547–565

    Google Scholar 

  • Stender Y, Jokiel PL, Rodgers KS (2014) Thirty years of coral reef change in relation to coastal construction and increased sedimentation at Pelekane Bay, Hawaiʻi. PeerJ 2:e300

    PubMed  PubMed Central  Google Scholar 

  • Sully S, van Woesik R (2020) Turbid reefs moderate coral bleaching under climate-related temperature stress. Global Change Biology 26:1367–1373

    PubMed  PubMed Central  Google Scholar 

  • Tan YTR, Wainwright BJ, Afiq-Rosli L, Ip YCA, Lee JN, Nguyen NTH, Pointing SB, Huang D (2020) Endosymbiont diversity and community structure in Porites lutea from Southeast Asia are driven by a suite of environmental variables. Symbiosis. https://doi.org/10.1007/s13199-020-00671-2

    Article  Google Scholar 

  • Tanzil IJT, Ng APK, Tey YQ, Tan BHY, Yun EY, Huang D (2016) A preliminary characterisation of Symbiodinium diversity in some common corals from Singapore. Cosmos 12:15–27

    Google Scholar 

  • Teixeira CD, Leitão RLL, Ribeiro FV, Moraes FC, Neves LM, Bastos AC, Pereira-Filho GH, Kampel M, Salomon PS, Sá JA, Falsarella LN, Amario M, Abieri ML, Pereira RC, Amado-Filho GM, Moura RL (2019) Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs 38:801–813

    Google Scholar 

  • Thomas L, Kennington WJ, Evans RD, Kendrick GA, Stat M (2017) Restricted gene flow and local adaptation highlight the vulnerability of high-latitude reefs to rapid environmental change. Global Change Biology 23:2197–2205

    PubMed  Google Scholar 

  • Thomas L, Rose NH, Bay RA, López EH, Morikawa MK, Ruiz-Jones L, Palumbi SR (2018) Mechanisms of Thermal Tolerance in Reef-Building Corals across a Fine-Grained Environmental Mosaic: Lessons from Ofu. Frontiers in Marine Science, American Samoa. https://doi.org/10.3389/fmars.2017.00434

    Book  Google Scholar 

  • Todd PA, Heery EC, Loke LHL, Thurstan RH, Kotze DJ, Swan C (2019) Towards an urban marine ecology: characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos 128:1215–1242

    Google Scholar 

  • Tomascik T, van Woesik R, Mah AJ (1996) Rapid coral colonization of a recent lava flow following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15:169–175

    Google Scholar 

  • Towle EK, Enochs IC, Langdon C (2015) Threatened Caribbean Coral Is Able to Mitigate the Adverse Effects of Ocean Acidification on Calcification by Increasing Feeding Rate. PLOS ONE 10:e0123394

    PubMed  PubMed Central  Google Scholar 

  • UNEP (2002) Percent of the population living within 100 kilometers from the coast

  • van Woesik R, McCaffrey KR (2017) Repeated Thermal Stress, Shading, and Directional Selection in the Florida Reef Tract. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2017.00182

    Article  Google Scholar 

  • van Woesik R, Houk P, Isechal AL, Idechong JW, Victor S, Golbuu Y (2012) Climate-change refugia in the sheltered bays of Palau: analogs of future reefs. Ecology and Evolution 2:2474–2484

    PubMed  PubMed Central  Google Scholar 

  • Vaughan GO, Burt JA (2016) The changing dynamics of coral reef science in Arabia. Mar Pollut Bull 105:441–458

    CAS  PubMed  Google Scholar 

  • Vaughan GO, Al-Mansoori N, Burt J (2019) The Arabian Gulf. In: Sheppard C (ed) World Seas: An Environmental Evaluation, 2nd edn. Elsevier Science, Amsterdam, pp 1–23

    Google Scholar 

  • Vroom PS, Zgliczynski BJ (2011) Effects of volcanic ash deposits on four functional groups of a coral reef. Coral Reefs 30:1025–1032

    Google Scholar 

  • Wagner DE, Kramer P, van Woesik R (2010) Species composition, habitat, and water quality influence coral bleaching in southern Florida. Mar Ecol Prog Ser 408:65–78

    Google Scholar 

  • Wainwright BJ, Afiq-Rosli L, Zahn GL, Huang D (2019) Characterisation of coral-associated bacterial communities in an urbanised marine environment shows strong divergence over small geographic scales. Coral Reefs 38:1097–1106

    Google Scholar 

  • Webster F, Dibden C, Weir K, Chubb C (2002) Towards an assessment of the natural and human use impacts on the marine environment of the Abrolhos Islands. Department of Fisheries, Western Australia

    Google Scholar 

  • Wenger AS, Johansen JL, Jones GP (2011) Suspended sediment impairs habitat choice and chemosensory discrimination in two coral reef fishes. Coral Reefs 30:879–887

    Google Scholar 

  • Wenger AS, Johansen JL, Jones GP (2012) Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. J Exp Mar Biol Ecol 428:43–48

    Google Scholar 

  • Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nature Communications 8:14213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler M, Grupstra CGB, Barreto MM, Eaton M, BaOmar J, Zubier K, Al-Sofyani A, Turki AJ, Ormond R, Voolstra CR (2019) Coral bacterial community structure responds to environmental change in a host-specific manner. Nature Communications 10:3092

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Burt.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burt, J.A., Camp, E.F., Enochs, I.C. et al. Insights from extreme coral reefs in a changing world. Coral Reefs 39, 495–507 (2020). https://doi.org/10.1007/s00338-020-01966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-01966-y

Keywords

  • Marginal reef
  • Lagoon
  • Intertidal
  • Turbid
  • Urban reef
  • Extreme temperature