Moderate zooxanthellate coral growth rates in the lower photic zone

Abstract

The ecology of phototrophic corals in the lower photic zone remains poorly understood. Studies to date indicate that growth rates generally decrease as available light attenuates with depth and are very slow at depths > 40 m. Here, we provide detailed evidence for moderate growth for obligate zooxanthellate corals at extreme depths. Using reliable U–Th dating techniques, Leptoseris spp. from 70 to 110 m in Hawaii were determined to grow (linear extension) from 8.0 ± 3.0 to 24.6 ± 2.7 mm yr−1. Given the modest growth rates of other agariciids in well-lit shallow waters, these deep-water growth rates are unexpectedly high, suggest specialized physiology and help alter the traditional paradigm on photo-ecology in mesophotic coral ecosystems. The thin plate-like colonies of Leptoseris spp., which dominate the coral community in the lower photic zone throughout the Indo-Pacific, primarily grow radially and do not appear to appreciably thicken over time. In the lower photic zone, this growth strategy maximizes surface area with minimal calcification, thereby enabling Leptoseris to expand planar area more quickly than thickly calcified species. Photosynthetic and growth efficiencies may also be facilitated by the optical geometry of their skeletons, increased access to inorganic nutrients and cooler temperatures at depth. These robust growth rates have important implications on the recovery potential of MCE habitat in the event of disturbance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, pp 119–150

  2. Atkinson MJ (2011) Biogeochemistry of nutrients. In: Dubinsy Z, Stambler N (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht, Netherlands, pp 199–206

    Google Scholar 

  3. Bak R (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Netherlands Journal of Sea Research 10:285–337

    Article  Google Scholar 

  4. Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the deep reef refugia hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  5. Bongaerts P, Carmichael M, Hay KB, Tonk L, Frade PR, Hoegh-Guldberg O (2015a) Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R Soc Open Sci. 2:140297

    PubMed  PubMed Central  Article  Google Scholar 

  6. Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KRW, Bak RPM, Vermeij MJA, Hoegh-Guldberg O (2015b) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep 5:1–9

    Article  CAS  Google Scholar 

  7. Carlson DF, Fredj E, Gildor H (2014) The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations. Deep Sea Research Part I: Oceanographic Research Papers 84:1–17

    Article  Google Scholar 

  8. Carricart-Ganivet JP, Lough JM, Barnes DJ (2007) Growth and luminescence characteristics in skeletons of massive Porites from a depth gradient in the central Great Barrier Reef. J Exp Mar Biol Ecol 351:27–36

    Article  Google Scholar 

  9. Cheng H, Edwards RL, Shen C-C, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C (2013) Improvements in 230 Th dating, 230 Th and 234 U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371:82–91

    Article  CAS  Google Scholar 

  10. Clark TR, Roff G, Zhao J, Feng Y, Done TJ, Pandolfi JM (2014) Testing the precision and accuracy of the U–Th chronometer for dating coral mortality events in the last 100 years. Quaternary Geochronology 23:35–45

    Article  Google Scholar 

  11. Clark TR, Roff G, Zhao J, Feng Y, Done TJ, McCook LJ, Pandolfi JM (2017) U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century. Proceedings of the National Academy of Sciences 114:10350–10355

    CAS  Article  Google Scholar 

  12. Corno G, Letelier RM, Abbott MR, Karl DM (2008) Temporal and vertical variability in photosynthesis in the North Pacific Subtropical Gyre. Limnol Oceanogr 53:1252

    Article  Google Scholar 

  13. Crabbe MJC (2009) Scleractinian coral population size structures and growth rates indicate coral resilience on the fringing reefs of North Jamaica. Mar Environ Res 67:189–198

    CAS  PubMed  Article  Google Scholar 

  14. de Villiers S, Shen GT, Nelson BK (1994) The SrCa-temperature relationship in coralline aragonite: Influence of variability in (SrCa) seawater and skeletal growth parameters. Geochim Cosmochim Acta 58:197–208

    Article  Google Scholar 

  15. Dullo W-C (2005) Coral growth and reef growth: a brief review. Facies 51:33–48

    Article  Google Scholar 

  16. Dustan P (1979) Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis Ellis and Solander in relation to depth on a West Indian coral reef. Bull Mar Sci 29:79–95

    Google Scholar 

  17. Edinger EN, Limmon GV, Jompa J, Widjatmoko W, Heikoop JM, Risk MJ (2000) Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Mar Pollut Bull 40:404–425

    CAS  Article  Google Scholar 

  18. Englebert N, Bongaerts P, Muir PR, Hay KB, Pichon M, Hoegh-Guldberg O (2017) Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea. PloS one 12:e0170336

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Fricke HW, Vareschi E, Schlichter D (1987) Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73:371–381

    CAS  PubMed  Article  Google Scholar 

  20. Glynn P, Wellington G (1983) Coral growth. In: Glynn P, Wellington G (eds) Corals and coral reefs of the Galapagos Islands. University of California Press, Berkeley, pp 93–118

    Google Scholar 

  21. Goulet TL, Lucas MQ, Schizas NV (2019) Symbiodiniaceae Genetic Diversity and Symbioses with Hosts from Shallow to Mesophotic Coral Ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic Coral Ecosystems. Springer International Publishing, Cham, pp 537–551

    Google Scholar 

  22. Grigg RW (1982) Darwin Point: A threshold for atoll formation. Coral Reefs 1:29–34

    Article  Google Scholar 

  23. Grigg RW (2006) Depth limit for reef building corals in the Au’au Channel, S.E. Hawaii. Coral Reefs 25:77–84

    Article  Google Scholar 

  24. Groves SH, Holstein DM, Enochs IC, Kolodzeij G, Manzello DP, Brandt ME, Smith TB (2018) Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St.Thomas, US Virgin Islands. Coral Reefs 37:345–354

    Article  Google Scholar 

  25. Guzmán HM, Cortes J (1989) Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull Mar Sci 44:1186–1194

    Google Scholar 

  26. Harriott V (1999) Coral growth in subtropical eastern Australia. Coral Reefs 18:281–291

    Article  Google Scholar 

  27. Hubbard DK, Scaturo D (1985) Growth rates of seven species of scleractinean corals from Cane Bay and Salt River, St. Croix, USVI. Bull Mar Sci 36:325–338

    Google Scholar 

  28. Hughes T, Jackson J (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166

    Article  Google Scholar 

  29. Huston M (1985) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4:19–25

    Article  Google Scholar 

  30. Jing-fen L (1985) Ecological regions of the reef corals of China. J Coast Res 1:57–70

    Google Scholar 

  31. Kahng SE (2013) Growth rate for a zooxanthellate coral (Leptoseris hawaiiensis) at 90 m. Galaxea, J Coral Reef Stud 15:39–40

    Article  Google Scholar 

  32. Kahng SE, Kelley C (2007) Vertical zonation of habitat forming benthic species on a deep photosynthetic reef (50-140 m) in the Au au Channel, Hawaii. Coral Reefs 26:679–687

    Article  Google Scholar 

  33. Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  34. Kahng SE, Wagner D, Lantz C, Vetter O, Gove J, Merrifield M (2012a) Temperature related depth limits of warm-water corals. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia:9C

  35. Kahng SE, Hochberg EJ, Apprill A, Wagner D, Luck DG, Perez D, Bidigare RR (2012b) Efficient light harvesting in deep-water zooxanthellate corals. Mar Ecol Prog Ser 455:65

    CAS  Article  Google Scholar 

  36. Kahng SE, Copus J, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Current Opinion in Environmental Sustainability 7:72–81

    Article  Google Scholar 

  37. Kahng S, Copus JM, Wagner D (2017) Mesophotic Coral Ecosystems. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots. Springer International Publishing, Cham, pp 185–206

    Google Scholar 

  38. Kahng S, Akkaynak D, Shlesinger T, Hockberg E, Wiedenmann J, Tamir R, Tchernov D (2019) Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. In: Loya Y, Bridge T, Puglise K (eds) Mesophotic coral ecosystems. Springer Publishing, Dordrecht, pp 801–828

    Google Scholar 

  39. Karl D, Letelier R (2009) Marine habitats and conditions for microbial growth Encyclopedia of Microbiology, 3rd edn. Elsevier, Oxford, pp 258–277

    Google Scholar 

  40. Kavanaugh MT, Church MJ, Davis CO, Karl DM, Letelier RM, Doney SC (2018) ALOHA from the edge: Reconciling three decades of in situ Eulerian observations and geographic variability in the North Pacific Subtropical Gyre. Frontiers in Marine Science 5:130

    Article  Google Scholar 

  41. Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  42. Kotb MM (2001) Growth rates of three reef-building coral species in the northern Red Sea, Egypt. Egyptian Journal of Aquatic Biology and Fisheries 5:165–185

    Article  Google Scholar 

  43. Letelier RM, Karl DM, Abbott MR, Bidigare RR (2004) Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol Oceanogr 49:508–519

    CAS  Article  Google Scholar 

  44. Lough J, Barnes D (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    CAS  PubMed  Article  Google Scholar 

  45. Lough J, Cantin N, Benthuysen J, Cooper T (2016) Environmental drivers of growth in massive Porites corals over 16 degrees of latitude along Australia’s northwest shelf. Limnol Oceanogr 61:684–700

    Article  Google Scholar 

  46. Luck DG, Forsman ZH, Toonen RJ, Leicht SJ, Kahng SE (2013) Polyphyly and hidden species among Hawai‘i’s dominant mesophotic coral genera, Leptoseris and Pavona (Scleractinia: Agariciidae). PeerJ 1:e132

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Ma TY (1937) On the growth rate of reef corals and its relation to sea water temperature. Pal Sinica Ser B 16:1–226

    Google Scholar 

  48. Manzello D (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  49. Mayor AG (1924) Growth rate of Samoan corals. Publs Carnegie Insta 340:51–72

    Google Scholar 

  50. Muir PR, Wallace CC, Done T, Aguirre JD (2015) Limited scope for latitudinal extension of reef corals. Science 348:1135–1138

    CAS  PubMed  Article  Google Scholar 

  51. Oliver J, Chalker B, Dunlap W (1983) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. I. Long-term growth responses of Acropora formosa (Dana 1846). J Exp Mar Biol Ecol 73:11–35

    Article  Google Scholar 

  52. Pratchett MS, Anderson KD, Hoogenboom MO, Widman E, Baird AH (2015) Spatial, temporal and taxonomic variation in coral growth—implications for the structure and function of coral reef ecosystems. Oceanogr Mar Biol Annu Rev 53:215–295

    Google Scholar 

  53. Pyle RL, Boland R, Bolick H, Bowen BW, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery A (2016) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475

    PubMed  PubMed Central  Article  Google Scholar 

  54. Roark E, Guilderson T, Dunbar R, Ingram B (2006) Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Prog Ser 327:1–14

    CAS  Article  Google Scholar 

  55. Shen C-C, Cheng H, Edwards RL, Moran SB, Edmonds HN, Hoff JA, Thomas RB (2003) Measurement of attogram quantities of 231 Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy. Anal Chem 75:1075–1079

    CAS  PubMed  Article  Google Scholar 

  56. Shen C-C, Li K-S, Sieh K, Natawidjaja D, Cheng H, Wang X, Edwards RL, Lam DD, Hsieh Y-T, Fan T-Y (2008) Variation of initial 230 Th/232 Th and limits of high precision U–Th dating of shallow-water corals. Geochim Cosmochim Acta 72:4201–4223

    CAS  Article  Google Scholar 

  57. Shen C-C, Wu C-C, Cheng H, Edwards RL, Hsieh Y-T, Gallet S, Chang C-C, Li T-Y, Lam DD, Kano A (2012) High-precision and high-resolution carbonate 230 Th dating by MC-ICP-MS with SEM protocols. Geochim Cosmochim Acta 99:71–86

    CAS  Article  Google Scholar 

  58. Tamir R, Eyal G, Kramer N, Laverick JH, Loya Y (2019) Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere 10:e02839

    Article  Google Scholar 

  59. Vaughan TW (1915) The geologic significance of the growth-rate of the Floridian and Bahaman shoal-water corals. J Wash Acad Sci 5:591–600

    Google Scholar 

  60. Watanabe T, Watanabe TK, Yamazaki A, Yoneta S, Sowa K, Sinniger F, Eyal G, Loya Y, Harii S (2019) Coral sclerochronology: Similarities and differences in the coral isotopic signatures between mesophotic and shallow-water reefs. In: Loya Y, Bridge T, Puglise K (eds) Mesophotic coral ecosystems. Springer Publishing, Dordrecht, pp 667–681

    Google Scholar 

  61. Weinstein D, Sharifi A, Klaus J, Smith T, Giri S, Helmle K (2016) Coral growth, bioerosion, and secondary accretion of living orbicellid corals from mesophotic reefs in the US Virgin Islands. Mar Ecol Prog Ser 559:45–63

    Article  Google Scholar 

  62. Wellington GM (1982) An experimental analysis of the effects of light and zooplankton on coral zonation. Oecologia 52:311–320

    PubMed  Article  Google Scholar 

  63. Wellington GM, Glynn PW (1983) Environmental influences on skeletal banding in eastern Pacific (Panama) corals. Coral Reefs 1:215–222

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded in part by the Hawai’i Undersea Research Laboratory (HURL). U–Th dating was supported by grants to C.-C.S. from Taiwan ROC Ministry of Science and Technology (108-2119-M-002-012), National Taiwan University (109L8926, 105R7625) and the Higher Education Sprout Project of the Ministry of Education (108L901001). Special thanks go to A. Rossiter, G. Lentes, M. Dimzon and the Waikiki Aquarium staff for logistical support; D. Luck for assistance with Leptoseris taxonomy; F. Parrish for sharing temperature data; T. Kirby, M. Cremer and the HURL staff for operational support with the Pisces IV/V submersibles.

Author information

Affiliations

Authors

Contributions

SEK and TKW conceived the idea and research. TW, H-MH, TKW and C-CS conducted the U–Th dating analyses and skeletal measurements and prepared the figures. C–CS conceived the funding. SEK wrote the manuscript, and all other authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Samuel E. Kahng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Mark R. Patterson

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kahng, S.E., Watanabe, T.K., Hu, HM. et al. Moderate zooxanthellate coral growth rates in the lower photic zone. Coral Reefs 39, 1273–1284 (2020). https://doi.org/10.1007/s00338-020-01960-4

Download citation

Keywords

  • Growth rate
  • Zooxanthellate corals
  • Mesophotic coral ecosystems
  • Leptoseris
  • Uranium–thorium dating