Skip to main content

Differential protein abundance associated with delayed regeneration of the scleractinian coral Montastraea cavernosa

Abstract

Scleractinian corals provide the three-dimensional structure and function of coral reefs around the globe. These sessile animals are subject to physical injuries from a variety of sources and can completely regenerate damaged tissue as a survival mechanism; however, tissue regeneration rates vary widely within and across taxa. To explore the intraspecific differences in tissue regeneration, circular lesions (12 mm diameter × 3 mm deep) were created on 30 Montastraea cavernosa colonies at a depth of 10–12 m in the coastal waters of Carriacou, Grenada. Coral regeneration was documented at weekly intervals for 33 d. Nonlinear regression was used to generate a predictive model for lesion closure with time, and separate models were fit to corals that regenerated normally and those that had significantly delayed regeneration. A lesion created on each coral colony was re-sampled at each of 14, 21, and 31, 32, or 33 d following injury, and the polyps were flash-frozen and stored for proteomic analysis. An initial polyp sample, the 14 d, the 21 d, and the 31–33 d samples were used to quantify the difference in protein abundance as the lesions healed using tandem mass tags and liquid chromatography-mass spectrometry. One hundred thirty-one proteins were significantly differentially abundant in ‘fast’ vs. ‘slow’ M. cavernosa colonies. These proteins have been associated with inflammation, the extracellular matrix, skeleton, catabolism, and apoptosis in other corals. Differences in the abundance of proteins in these categories may have led to the observed differences between regeneration in the ‘fast’ and ‘slow’ M. cavernosa colonies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  2. Aurora AB, Olson EN (2015) Immune modulation of stem cells and regeneration. Cell Stem Cell 15:14–25

    Google Scholar 

  3. Barneah O, Benayahu Y, Weis VM (2006) Comparative proteomics of symbiotic and aposymbiotic juvenile soft corals. Mar Biotechnol 8:11–16

    CAS  PubMed  Google Scholar 

  4. Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720

    CAS  PubMed  Google Scholar 

  5. Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, Gough J, Weis VM, Aranda M, Pringle JR, Voolstra CR (2015) The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci 112:11893–11898

    CAS  PubMed  Google Scholar 

  6. Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25:161–170

    PubMed  Google Scholar 

  7. Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36:379–385

    CAS  PubMed  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  9. Casey TM, Khan JM, Bringans SD, Koudelka T, Takle PS, Downs RA, Livk A, Syme RA, Tan KC, Lipscombe RJ (2017) Analysis of reproducibility of proteome coverage and quantitation using isobaric mass tags (iTRAQ and TMT). J Proteome Res 16:384–392

    CAS  PubMed  Google Scholar 

  10. Chang J, Musser JH, McGregor H (1987) Phospholipase A2: Function and pharmacological regulation. Biochem Pharmacol 36:2429–2436

    CAS  PubMed  Google Scholar 

  11. Chiou CY, Chen IP, Chen C, Wu HJL, Wei NV, Wallace CC, Chen CA (2008) Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral exon/intron organization of the eumetazoan CaM gene. J Mol Evol 66:317–324

    CAS  PubMed  Google Scholar 

  12. Closek CJ, Sunagawa S, DeSalvo MK, Piceno YM, DeSantis TZ, Brodie EL, Weber MX, Voolstra CR, Andersen GL, Medina M (2014) Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata. ISME J 8:2411–2422

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    CAS  Google Scholar 

  14. Cox AD, Der CJ (2003) The dark side of Ras: Regulation of apoptosis. Oncogene 22:8999–9006

    CAS  PubMed  Google Scholar 

  15. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and pretome-wide protein quantification. Nat Biotechnol 26:1367–1372

    CAS  PubMed  Google Scholar 

  16. Császár NBM, Seneca FO, Van Oppen MJH (2009) Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar Ecol Prog Ser 392:93–102

    Google Scholar 

  17. Cziesielski MJ, Liew YJ, Cui G, Schmidt-Roach S, Campana S, Marondedze C, Aranda M (2018) Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc R Soc B Biol Sci 285:20172654

    Google Scholar 

  18. DeBoer ML, Krupp DA, Weis VM (2007) Proteomic and transcriptional analyses of coral larvae newly engaged in symbiosis with dinoflagellates. Comp Biochem Physiol - Part D Genomics Proteomics 2:63–73

    PubMed  Google Scholar 

  19. Drake J, Mass T, Haramaty L, Zelzion E, Bjattacharya D, Falkowski P (2013) Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci 110:3788–3793

    CAS  PubMed  Google Scholar 

  20. Fuess LE, Pinzón JH, Weil E, Mydlarz LD (2016) Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals. Dev Comp Immunol 62:17–28

    CAS  PubMed  Google Scholar 

  21. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayward DC, Hetherington S, Behm CA, Grasso LC, Forêt S, Miller DJ, Ball EE (2011) Differential gene expression at coral settlement and metamorphosis - a subtractive hybridization study. PLoS One 6:e26411

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Henry LA, Hart M (2005) Regeneration from injury and resource allocation in sponges and corals - A review. Int Rev Hydrobiol 90:125–158

    Google Scholar 

  24. Horricks RA, Herbinger CM, Lillie BN, Taylor P, Lumsden JS (2019) Differential protein abundance during the first month of regeneration of the Caribbean star coral Montastraea cavernosa. Coral Reefs 38:45–61

    Google Scholar 

  25. Huang C, Morlighem JÉRL, Cai J, Liao Q, Perez CD, Gomes PB, Guo M, Rádis-Baptista G, Lee SMY (2017) Identification of long non-coding RNAs in two anthozoan species and their possible implications for coral bleaching. Sci Rep 7:1–18

    Google Scholar 

  26. Joshi R, Gilligan DM, Otto E, McLaughlin T, Bennett V (1991) Primary structure and domain organization of human alpha and beta adducin. J Cell Biol 115:665–675

    CAS  PubMed  Google Scholar 

  27. Kitchen SA, Crowder CM, Poole AZ, Weis VM, Meyer E (2015) De novo assembly and characterization of four Anthozoan (phylum Cnidaria) transcriptomes. G3 Bethesda 5:2441–2452

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Koch C, Anderson D, Moran M, Ellis C, Pawson T (2006) SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674

    Google Scholar 

  29. De La Cruz EM, Ostap EM, Brundage RA, Reddy KS, Sweeney HL, Safer D (2000) Thymosin-β4 changes the conformation and dynamics of actin monomers. Biophys J 78:2516–2527

    Google Scholar 

  30. Lee JH, Rho SB, Chun T (2005) Programmed cell death 6 (PDCD6) protein interacts with death-associated protein kinase 1 (DAPk1): Additive effect on apoptosis via caspase-3 dependent pathway. Biotechnol Lett 27:1011–1015

    CAS  PubMed  Google Scholar 

  31. Lesser MP, Shick JM (1989) Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar Biol 102:243–255

    Google Scholar 

  32. Li W, Ye Y (2008) Polyubiquitin chains: Functions, structures, and mechanisms. Cell Mol Life Sci 65:2397–2406

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Low TL, Liu DT, Jou JH (1992) Primary structure of thymosin β 12, a new member of the β-thymosin family isolated from perch liver. Arch Biochem Biophys 293:32–39

    CAS  PubMed  Google Scholar 

  34. Lupi A, Tenni R, Rossi A, Cetta G, Forlino A (2008) Human prolidase and prolidase deficiency: An overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations. Amino Acids 35:739–752

    CAS  PubMed  Google Scholar 

  35. Mass T, Drake JL, Haramaty L, Rosenthal Y, Schofield OME, Sherrell RM, Falkowski PG (2012) Aragonite precipitation by “proto-polyps” in coral cell cultures. PLoS One 7:8–15

    Google Scholar 

  36. Mayfield AB, Hsiao YY, Fan TY, Chen CS, Gates RD (2010) Evaluating the temporal stability of stress-activated protein kinase and cytoskeleton gene expression in the Pacific reef corals Pocillopora damicornis and Seriatopora hystrix. J Exp Mar Bio Ecol 395:215–222

    Google Scholar 

  37. Mydlarz LD, Palmer CV (2011) The presence of multiple phenoloxidases in Caribbean reef-building corals. Comp Biochem Physiol - Part A 159:372–378

    Google Scholar 

  38. Nevalainen TJ, Peuravuori HJ, Quinn RJ, Llewellyn LE, Benzie JAH, Fenner PJ, Winkel KD (2004) Phospholipase A2 in Cnidaria. Comp Biochem Physiol - B Biochem Mol Biol 139:731–735

    PubMed  Google Scholar 

  39. Otto JJ (1990) Vinculin. Cell Motil Cytoskeleton 16:1–6

    CAS  PubMed  Google Scholar 

  40. Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS One 4:e7298

    PubMed  PubMed Central  Google Scholar 

  41. Peng SE, Chen WNU, Chen HK, Lu CY, Mayfield AB, Fang LS, Chen CS (2011) Lipid bodies in coral-dinoflagellate endosymbiosis: Proteomic and ultrastructural studies. Proteomics 11:3540–3555

    CAS  PubMed  Google Scholar 

  42. Peng SE, Luo YJ, Huang HJ, Lee IT, Hou LS, Chen WNU, Fang LS, Chen CS (2008) Isolation of tissue layers in hermatypic corals by N-acetylcysteine: Morphological and proteomic examinations. Coral Reefs 27:133–142

    Google Scholar 

  43. Peng SE, Wang YB, Wang LH, Chen WNU, Lu CY, Fang LS, Chen CS (2010) Proteomic analysis of symbiosome membranes in cnidaria - Dinoflagellate endosymbiosis. Proteomics 10:1002–1016

    CAS  PubMed  Google Scholar 

  44. Pollack K, Balazs K, Ogunseitan O (2009) Proteomic assessment of caffeine effects on coral symbionts. Environ Sci Technol 43:2085–2091

    CAS  PubMed  Google Scholar 

  45. Rahman MA, Isa Y (2005) Characterization of proteins from the matrix of spicules from the alcyonarian, Lobophytum crassum. J Exp Mar Bio Ecol 321:71–82

    CAS  Google Scholar 

  46. Rahman MA, Oomori T (2009) Analysis of protein-induced calcium carbonate crystals in soft coral by near-field IR microspectroscopy. Anal Sci 25:153–155

    PubMed  Google Scholar 

  47. Reef R, Dunn S, Levy O, Dove S, Shemesh E, Brickner I, Leggat W, Hoegh-Guldberg O (2009) Photoreactivation is the main repair pathway for UV-induced DNA damage in coral planulae. J Exp Biol 212:2760–2766

    CAS  PubMed  Google Scholar 

  48. Richardson CA, Dustan P, Lang JC (1979) Maintenance of living space by sweeper tentacles of Montastrea cavenosa, a Caribbean Reef Coral. Mar Biol 186:181–186

    Google Scholar 

  49. Romanova EV, Roth MJ, Rubakhim SS, Jakuboski JA, Kelley WP, Kirk MD, Kelleher NL, Sweedler JV (2006) Identification and characterization of homologues of vertebrate β-thymosin in the marine mollusk Aplysia californica. J Mass Spectrom 41:1030–1040

    CAS  PubMed  Google Scholar 

  50. Rougée LRA, Richmond RH, Collier AC (2014) Natural variations in xenobiotic-metabolizing enzymes: Developing tools for coral monitoring. Coral Reefs 33:523–535

    Google Scholar 

  51. Slattery M, Ankisetty S, Corrales J, Marsh-Hunkin KE, Gochfeld DJ, Willett KL, Rimoldi JM (2012) Marine proteomics: A critical assessment of an emerging technology. J Nat Prod 75:1833–1837

    CAS  PubMed  Google Scholar 

  52. Stoeva S, Horger S, Voelter W (1997) A novel β-thymosin from the sea urchin: Extending the phylogenetic distribution of β-thymosins from mammals to echinoderms. J Pept Sci 3:282–290

    CAS  PubMed  Google Scholar 

  53. Sun Y, Chen X, Xu Y, Liu Q, Jiang X, Wang S, Guo W, Zhou Y (2017) Thymosin β4 is involved in the antimicrobial immune response of Golden pompano, Trachinotus ovatus. Fish Shellfish Immunol 69:90–98

    CAS  PubMed  Google Scholar 

  54. Sunagawa S, DeSalvo MK, Voolstra CR, Reyes-Bermudez A, Medina M (2009) Identification and gene expression analysis of a taxonomically restricted cysteine-rich protein family in reef-building corals. PLoS One 4:e4865

    PubMed  PubMed Central  Google Scholar 

  55. Surazynski A, Donald SP, Cooper SK, Whiteside MA, Salnikow K, Liu Y, Phang JM (2008) Extracellular matrix and HIF-1 signaling: The role of prolidase. Int J Cancer 122:1435–1440

    CAS  PubMed  Google Scholar 

  56. Swulius MT, Waxham MN (2008) Ca2 +/calmodulin-dependent protein kinases. Cell Mol Life Sci 65:2637–2657

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development 138:1447–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883

    PubMed  Google Scholar 

  59. Vigneswara V, Lowenson JD, Powell CD, Thakur M, Bailey K, Clarke S, Ray DE, Carter WG (2006) Proteomic identification of novel substrates of a protein isoaspartyl methyltransferase repair enzyme. J Biol Chem 281:32619–32629

    CAS  PubMed  Google Scholar 

  60. Voolstra CR, Sunagawa S, Matz MV, Bayer T, Aranda M, Buschiazzo E, DeSalvo MK, Lindquist E, Szmant AM, Coffroth MA, Medina M (2011) Rapid evolution of coral proteins responsible for interaction with the environment. PLoS One 6:e20392

    CAS  PubMed  PubMed Central  Google Scholar 

  61. van De Water JAJAM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, Van Oppen MJH (2015a) The coral immune response facilitates protection against microbes during tissue regeneration. Mol Ecol 24:3390–3404

    PubMed  Google Scholar 

  62. van de Water JAJAM, Leggat W, Bourne DG, van Oppen MJH, Willis BL, Ainsworth TD (2015b) Elevated seawater temperatures have a limited impact on the coral immune response following physical damage. Hydrobiologia 759:201–214

    CAS  Google Scholar 

  63. Wenger Y, Buzgariu W, Reiter S, Galliot B (2014) Injury-induced immune responses in Hydra. Semin Immunol 26:277–294

    CAS  PubMed  Google Scholar 

  64. Weston AJ, Dunlap WC, Beltran VH, Starcevic A, Hranueli D, Ward M, Long PF (2015) Proteomics Links the Redox State to Calcium Signaling During Bleaching of the Scleractinian Coral Acropora microphthalma on Exposure to High Solar Irradiance and Thermal Stress. Mol Cell Proteomics 14:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Weston AJ, Dunlap WC, Shick JM, Klueter A, Iglic K, Vukelic A, Starcevic A, Ward M, Wells ML, Trick CG, Long PF (2012) A profile of an endosymbiont-enriched fraction of the coral Stylophora pistillata reveals proteins relevant to microbial-host interactions. Mol Cell Proteomics 11:M111.015487

    PubMed  PubMed Central  Google Scholar 

  66. Wilkinson DM (1999) The disturbing history of intermediate disturbance. Oikos 84:145–147

    Google Scholar 

  67. Wojdyla K, Rogowska-Wrzesinska A, Wrzesinski K, Roepstorff P (2011) Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms. J Proteomics 75:44–55

    CAS  PubMed  Google Scholar 

  68. Woo S, Lee A, Denis V, Chen CA, Yum S (2014) Transcript response of soft coral (Scleronephthya gracillimum) on exposure to polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 21:901–910

    CAS  Google Scholar 

  69. Yan L, Fei K, Bridge D, Sarras MP (2000) A cnidarian homologue of translationally controlled tumor protein (P23/TCTP). Dev Genes Evol 210:507–511

    CAS  PubMed  Google Scholar 

  70. Zacharias H, Anokhin B, Khalturin K, Bosch TCG (2004) Genome sizes and chromosomes in the basal metazoan Hydra. Zoology 107:219–227

    PubMed  Google Scholar 

  71. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, Zhang W, Zhang Z, Lajoie GA, Ma B (2012) PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11(M111):010587

    PubMed  Google Scholar 

  72. Zhang X, Guo L, Collage RD, Stripay JL, Tsung A, Lee JS, Rosengart MR (2011) Calcium/calmodulin-dependent protein kinase (CaMK) I mediates the macrophage inflammatory response to sepsis. J Leukoc Biol 90:249–261

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Annette Patrick and Deefer Diving Carriacou for their help with the collection of samples in the field and Bioinformatics Solutions Inc. and Dyanne Brewer for their technical assistance interpreting LC–MS data. Funding for this research was provided by a NSERC Discovery Grant (Lumsden) and St. George’s University. Horricks received an OVC Scholarship and is the recipient of a St. George’s University post-doctoral scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryan A. Horricks.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Simon Davy

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horricks, R.A., Herbinger, C.M., Vickaryous, M.K. et al. Differential protein abundance associated with delayed regeneration of the scleractinian coral Montastraea cavernosa. Coral Reefs 39, 1175–1186 (2020). https://doi.org/10.1007/s00338-020-01952-4

Download citation

Keywords

  • Regeneration
  • Proteomics
  • Tandem mass tag
  • Montastraea cavernosa
  • Grenada