Skip to main content

Advertisement

Log in

Mass coral bleaching of P. versipora in Sydney Harbour driven by the 2015–2016 heatwave

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

A Correction to this article was published on 16 April 2019

This article has been updated

Abstract

High-latitude coral communities are distinct from their tropical counterparts, and how they respond to recent heat wave events that have decimated tropical reefs remains unknown. In Australia, the 2016 El Niño resulted in the largest global mass coral bleaching event to date, reaching as far south as Sydney Harbour (~ 34°S). Coral bleaching was observed for the first time (affecting ca., 60% of all corals) as sea surface temperatures in Sydney Harbour remained > 2 °C above the long-term mean summer maxima, enabling us to examine whether high-latitude corals bleached in a manner described for tropical corals. Responses of the geographically cosmopolitan Plesiastrea versipora and southerly restricted Coscinaraea mcneilli were contrasted across two harbour sites, both in situ and among samples-maintained ex situ in aquaria continually supplied with Sydney Harbour seawater. While both coral taxa hosted the same species of microalgal endosymbiont (Breviolum spp; formerly clade B), only P. versipora bleached both in situ and ex situ via pronounced losses of endosymbiont cells. Both species displayed very different metabolic responses (growth, photosynthesis, respiration and calcification) and bleaching susceptibilities under elevated temperatures. Bacterial microbiome profiling, however, revealed a convergence of bacterial community composition across coral species throughout the bleaching. Corals species found in temperate regions, including the generalist P. versipora, will therefore likely be highly susceptible to future change as heat waves grow in frequency and severity unless their thermal thresholds increase. Our observations provide further evidence that high-latitude systems are susceptible to community reorganisation under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 16 April 2019

    Co-author name was misspelt and should read as Todd C. LaJeunesse.

References

  • Abdo DA, Bellchambers LM, Evans SN (2012) Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands. PLoS One 7(8):e43878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, Gates RD, Padilla-Gamiño JL, Spalding HL, Smith C, Woolsey ES (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. The ISME Journal 9(10):2261

    Article  CAS  Google Scholar 

  • Ainsworth TD, Kvennefors EC, Blackall LL, Fine M, Hoegh-Guldberg O (2007) Disease and cell death in white syndrome of Acroporid corals on the Great Barrier Reef. Marine Biol 151(1):19–29

    Article  Google Scholar 

  • Anthony KR, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of experimental marine biology and ecology 252(2):221–253

    Article  CAS  PubMed  Google Scholar 

  • Anthony KR, Hoogenboom MO, Maynard JA, Grottoli AG, Middlebrook R (2009) Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Functional ecology 23(3):539–550

    Article  Google Scholar 

  • Beger M, Sommer B, Harrison PL, Smith SD, Pandolfi JM (2014) Conserving potential coral reef refuges at high latitudes. Diversity and distributions 20(3):245–257

    Article  Google Scholar 

  • Bessell-Browne P, Stat M, Thomson D, Clode PL (2014) Coscinaraea marshae corals that have survived prolonged bleaching exhibit signs of increased heterotrophic feeding. Coral Reefs 33(3):795–804

    Article  Google Scholar 

  • Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. The ISME journal 2(4):350

    Article  CAS  PubMed  Google Scholar 

  • Bridge TC, Ferrari R, Bryson M, Hovey R, Figueira WF, Williams SB, Pizarro O, Harborne AR, Byrne M (2014) Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef. PloS one 9(11):e113079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breen DA (2007) Systematic conservation assessments for marine protected areas in New South Wales, Australia. PhD Thesis, James Cook University, Australia

  • Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, Jin FF, Timmermann A, Collins M, Vecchi G, Lengaigne M, England MH (2015) Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change 5(2):132

    Article  Google Scholar 

  • Camp EF, Krause SL, Santos LM, Naumann MS, Kikuchi RK, Smith DJ, Wild C, Suggett DJ (2015) The “Flexi-Chamber”: A novel cost-effective in situ respirometry chamber for coral physiological measurements. PloS one 10(10):e0138800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camp EF, Nitschke MR, Rodolfo-Metalpa R, Houlbreque F, Gardner SG, Smith DJ, Zampighi M, Suggett DJ (2017) Reef-building corals thrive within hot-acidified and deoxygenated waters. Scientific reports 7(1):2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-Metalpa R, Smith DJ, Suggett DJ (2018) The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Frontiers in Marine Science 5:4

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA (2010) QIIME allows analysis of high-throughput community sequencing data. Nature methods 7(5):335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo KD, Helmuth BST (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Marine Biology 148(2):261–270

    Article  Google Scholar 

  • Dalton SJ, Carroll AG (2011) Monitoring coral health to determine coral bleaching response at high latitude eastern Australian reefs: an applied model for a changing climate. Diversity 3(4):592–610

    Article  Google Scholar 

  • Fujise R (2018) Distribution, abundance and life cycle of free-living Symbiodinium (Doctoral dissertation)

  • Gardner SG, Raina JB, Ralph PJ, Petrou K (2017) Reactive oxygen species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress. Journal of Experimental Biology 220(10):1787–1791

    Article  PubMed  Google Scholar 

  • Gardner SG, Camp EF, Smith DJ, Kahlke T, Osman EO, Gendron G, Hume BCC, Pogoreutz C, Voolstra CR, Suggett DJ (2019) Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave. Ecology and evolution 9(3):938–956

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbin EM, Krueger T, Putnam HM, Barott KL, Bodin J, Gates RD, Meibom A (2018) Short-Term Thermal Acclimation Modifies the Metabolic Condition of the Coral Holobiont. Frontiers in Marine Science 5:10

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440(7088):1186

    Article  CAS  PubMed  Google Scholar 

  • Grottoli AG, Martins PD, Wilkins MJ, Johnston MD, Warner ME, Cai WJ, Melman TF, Hoadley KD, Pettay DT, Levas S, Schoepf V (2018) Coral physiology and microbiome dynamics under combined warming and ocean acidification. PloS one 13(1):e0191156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison PL, Dalton SJ, Carroll AG (2011) Extensive coral bleaching on the world’s southernmost coral reef at Lord Howe Island. Australia. Coral Reefs 30(3):775

    Article  Google Scholar 

  • Hennige SJ, Smith DJ, Walsh SJ, McGinley MP, Warner ME, Suggett DJ (2010) Acclimation and adaptation of scleractinian coral communities along environmental gradients within an Indonesian reef system. Journal of Experimental Marine biology and ecology 391(1–2):143–152

    Article  Google Scholar 

  • Hernández-Zulueta J, Araya R, Vargas-Ponce O, Díaz-Pérez L, Rodríguez-Troncoso AP, Ceh J, Ríos-Jara E, Rodríguez-Zaragoza FA (2016) First deep screening of bacterial assemblages associated with corals of the Tropical Eastern Pacific. FEMS microbiology ecology 92(12):fiw196

    Article  CAS  PubMed  Google Scholar 

  • Heron SF, Maynard JA, Van Hooidonk R, Eakin CM (2016) Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Scientific reports 6:38402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogenboom M, Rodolfo-Metalpa R, Ferrier-Pagès C (2010) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. Journal of Experimental Biology 213(14):2399–2409

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biological Reviews 84(1):1–17

    Article  PubMed  Google Scholar 

  • Howe SA, Marshall AT (2001) Thermal compensation of metabolism in the temperate coral, Plesiastrea versipora (Lamarck, 1816). Journal of experimental marine biology and ecology 259(2):231–248

    Article  PubMed  Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). Journal of experimental marine biology and ecology 275(1):63–81

    Article  CAS  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC (2017) Global warming and recurrent mass bleaching of corals. Nature 543(7645):373

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Claar DC (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371):80–83

    Article  CAS  PubMed  Google Scholar 

  • Kahlke T (2018) Ampli-Tools (Version 1.0). Zenodo. https://doi.org/10.5281/zenodo.1137872

  • Kashefi K, Holmes DE, Baross JA, Lovley DR (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Applied and environmental microbiology 69(5):2985–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kegler HF, Lukman M, Teichberg M, Plass-Johnson J, Hassenrück C, Wild C, Gärdes A (2017) Bacterial community composition and potential driving factors in different reef habitats of the Spermonde Archipelago. Indonesia. Frontiers in microbiology 8:662

    Article  PubMed  Google Scholar 

  • Kimes NE, Johnson WR, Torralba M, Nelson KE, Weil E, Morris PJ (2013) The Montastraea faveolata microbiome: ecological and temporal influences on a Caribbean reef-building coral in decline. Environmental microbiology 15(7):2082–2094

    Article  PubMed  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Loh WK, Van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnology and Oceanography 48(5):2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics‐based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov.(Dinophyceae), two dinoflagellates symbiotic with cnidaria. Journal of Phycology 48(6):1380–1391

    Article  PubMed  Google Scholar 

  • Le Nohaïc M, Ross CL, Cornwall CE, Comeau S, Lowe R, McCulloch MT, Schoepf V (2017) Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci Rep 7(1):14999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levas S et al (2016) Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals? Coral Reefs 35(2):495–506

    Article  Google Scholar 

  • Lewis E, Wallace D, Allison LJ (1998) Program developed for CO2 system calculations. No. ORNL/CDIAC-105. Brookhaven National Lab., Dept. of Applied Science, Upton, NY (United States); Oak Ridge National Lab., Carbon Dioxide Information Analysis Center, TN (United States)

  • Littman R, Willis BL, Bourne DG (2011) Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environmental Microbiology Reports 3(6):651–660

    Article  CAS  PubMed  Google Scholar 

  • Madsen A et al (2014) The reproductive biology of the scleractinian coral Plesiastrea versipora in Sydney Harbour, Australia. Sexuality and Early Development in Aquatic Organisms 1(1):25–33

    Article  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL (2017) Responses of coral-associated bacterial communities to local and global stressors. Frontiers in Marine Science 4:262

    Article  Google Scholar 

  • Mizerek TL, Baird AH, Beaumont LJ, Madin JS (2016) Environmental tolerance governs the presence of reef corals at latitudes beyond reef growth. Global ecology and biogeography 25(8):979–987

    Article  Google Scholar 

  • Mumby PJ, Chisholm JR, Edwards AJ, Andrefouet S, Jaubert J (2001) Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event. Marine Ecology Progress Series 222:209–216

    Article  Google Scholar 

  • Naumann MS, Jantzen C, Haas AF, Iglesias-Prieto R, Wild C (2013) Benthic primary production budget of a Caribbean reef lagoon (Puerto Morelos, Mexico). PLoS One 8(12):e82923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333(6041):418–422

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26(6):715–721

    Article  CAS  PubMed  Google Scholar 

  • Prazeres M, Ainsworth T, Roberts TE, Pandolfi JM, Leggat W (2017) Symbiosis and microbiome flexibility in calcifying benthic foraminifera of the Great Barrier Reef. Microbiome 5(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  • Precoda K, Baird AH, Madsen A, Mizerek T, Sommer B, Su SN, Madin JS (2018) How does a widespread reef coral maintain a population in an isolated environment? Marine Ecol Prog Ser 594:85–94

    Google Scholar 

  • Pollard D, Ortiz E, Pethebridge R (1997) New South Wales marine and coastal bioregionalisation study: towards the development of a representative system of marine and estuarine protected areas for New South Wales. Coasts and Clean Seas Program; Ocean Rescue 2000 Project Report Series

  • Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends in Microbiology 23(8):490–497

    Article  CAS  PubMed  Google Scholar 

  • Randall CJ, Jordán-Garza AG, Muller EM, van Woesik R (2016) Does dark-spot syndrome experimentally transmit among Caribbean corals? PloS one 11(1):e0147493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roder C, Arif C, Bayer T, Aranda M, Daniels C, Shibl A, Chavanich S, Voolstra CR (2014) Bacterial profiling of White Plague Disease in a comparative coral species framework. The ISME journal 8(1):31

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnology and oceanography 52(5):1874–1882

    Article  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Röthig T, Yum LK, Kremb SG, Roik A, Voolstra CR (2017) Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Scientific Reports 7:44714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proceedings of the National Academy of Sciences

  • Scheufen T, Iglesias-Prieto R, Enríquez S (2017) Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Frontiers in Marine Science 4:309

    Article  Google Scholar 

  • Schoepf V, Stat M, Falter JL, McCulloch MT (2015) Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Scientific reports 5:17639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein RN, Correa AM, LaJeunesse TC, Baker AC (2011) Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Marine Ecology Progress Series 422:63–75

    Article  Google Scholar 

  • Silverstein RN, Cunning R, Baker AC (2017) Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment. Journal of Experimental Biology 220(7):1192–1196

    Article  PubMed  Google Scholar 

  • Sommer B et al (2014) Trait-mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 95(4):1000–1009

    Article  PubMed  Google Scholar 

  • Sommer B, Beger M, Harrison PL, Babcock RC, Pandolfi JM (2018) Differential response to abiotic stress controls species distributions at biogeographic transition zones. Ecography 41(3):478–490

    Article  Google Scholar 

  • Sorek M, Levy O (2012) Influence of the quantity and quality of light on photosynthetic periodicity in coral endosymbiotic algae. PLoS One 7(8):e43264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suggett DJ, Smith DJ (2011) Interpreting the sign of coral bleaching as friend vs. foe. Global Change Biology 17(1):45–55

    Article  Google Scholar 

  • Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, Boatman TG, Payton R, Tye Pettay D, Johnson VR, Warner ME, Lawson T (2012) Sea anemones may thrive in a high CO2 world. Global Change Biology 18(10):3015–3025

    Article  PubMed  Google Scholar 

  • Suggett DJ, Dong LF, Lawson T, Lawrenz E, Torres L, Smith DJ (2013) Light availability determines susceptibility of reef building corals to ocean acidification. Coral reefs 32(2):327–337

    Article  Google Scholar 

  • Swofford DL (2014) PAUP Phylogenetic Analysis Using Parsimony (and other methods). Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Thomson DP et al (2011) High latitude, deeper water coral bleaching at Rottnest Island, Western Australia. Coral Reefs 30(4):1107

    Article  Google Scholar 

  • Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environmental Microbiology 11(8):2148–2163

    Article  CAS  Google Scholar 

  • Tout J, Siboni N, Messer LF, Garren M, Stocker R, Webster NS, Ralph PJ, Seymour JR (2015) Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Frontiers in microbiology 6:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremblay P, Gori A, Maguer JF, Hoogenboom M, Ferrier-Pagès C (2016) Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Scientific reports 6:38112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuckett CA, de Bettignies T, Fromont J, Wernberg T (2017) Expansion of corals on temperate reefs: direct and indirect effects of marine heatwaves. Coral Reefs 36(3):947–956

    Article  Google Scholar 

  • Tuckett CA, Wernberg T (2018) High Latitude Corals Tolerate Severe Cold Spell. Frontiers in Marine Science 5:14

    Article  Google Scholar 

  • Vega Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2014) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Global change biology 20(2):544–554

    Article  PubMed  Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AG, Campbell AH, Ballesteros E, Heck KL Jr, Booth DJ, Coleman MA, Feary DA, Figueira W (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281(1789):20140846

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Campbell AH, Ballesteros E, Hoey AS, Vila-Concejo A, Bozec YM (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proceedings of the National Academy of Sciences 113(48):13791–13796

    Article  CAS  Google Scholar 

  • Veron JEN (2000) Corals of the World (No. C/593.6 V4)

  • Wangpraseurt D, Holm JB, Larkum AW, Pernice M, Ralph PJ, Suggett DJ, Kühl M (2017) In vivo microscale measurements of light and photosynthesis during coral bleaching: evidence for the optical feedback loop? Frontiers in microbiology 8:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner M et al (2002) Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea. Marine Biology 141(1):31–38

    Article  CAS  Google Scholar 

  • Wooldridge SA (2009) A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Marine and Freshwater Research 60(6):483–496

    Article  CAS  Google Scholar 

  • Yang SH, Lee ST, Huang CR, Tseng CH, Chiang PW, Chen CP, Chen HJ, Tang SL (2016) Prevalence of potential nitrogen-fixing, green sulfur bacteria in the skeleton of reef-building coral I sopora palifera. Limnology and Oceanography 61(3):1078–1086

    Article  Google Scholar 

  • Zardoya R, Costas E, López-Rodas V, Garrido-Pertierra A, Bautista JM (1995) Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences. Journal of molecular evolution 41(5):637–645

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bhattacharya D, Lin S (2005) Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rdna sequence comparisons 1. Journal of Phycology 41(2):411–420

    Article  CAS  Google Scholar 

  • Ziegler M et al (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nature Communications 8:14213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR (2016) Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Marine pollution bulletin 105(2):629–640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AL was instrumental in experimental design and operation at Manly SeaLife Sanctuary. Fieldwork support was provided by MN, EC, LF and AL. Sample processing and data analysis support was provided by TL, EC, MN, TK and DS. Manly SeaLife Sanctuary provided the laboratory and technical support for aquaria experimentation. Fieldwork support was provided by Caitlin Lawson, Trent Haydon, Shannen Smith, Rochelle Johnson and Penny McCracken. Sample processing and data analysis support was provided by Nahshon Siboni and Leo Hardtke. This research was supported by an Australian Postgraduate Award, and research funding was provided by the Climate Change Cluster and the School of Life Sciences, University of Technology Sydney, Experiment.com crowdfunding and Bioplatforms Australia Marine Microbes. Contribution of DS and EC were under ARC Discovery Grant DP160100271. Corals were collected under permit number P15/0042-1. We thank the reviewers Claire Ross and Brigitte Sommer for their comments greatly improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Goyen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyen, S., Camp, E.F., Fujise, L. et al. Mass coral bleaching of P. versipora in Sydney Harbour driven by the 2015–2016 heatwave. Coral Reefs 38, 815–830 (2019). https://doi.org/10.1007/s00338-019-01797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01797-6

Keywords

Navigation