Skip to main content

Advertisement

Log in

Impacts of coral bleaching on pH and oxygen gradients across the coral concentration boundary layer: a microsensor study

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

A Correction to this article was published on 13 September 2023

This article has been updated

Abstract

Reef-building corals are surrounded by complex microenvironments (i.e. concentration boundary layers) that partially isolate them from the ambient seawater. Although the presence of such concentration boundary layers (CBLs) could potentially play a role in mitigating the negative impacts of climate change stressors, their role is poorly understood. Furthermore, it is largely unknown how heat stress-induced bleaching affects O2 and pH dynamics across the CBLs of coral, particularly in branching species. We experimentally exposed the common coral species Acropora aspera to heat stress for 13 d and conducted a range of physiological and daytime microsensor measurements to determine the effects of bleaching on O2 and pH gradients across the CBL. Heat stress equivalent to 24 degree heating days (3.4 degree heating weeks) resulted in visible bleaching and significant declines in photochemical efficiency, photosynthesis rates and photosynthesis to respiration (P/R) ratios, whereas dark respiration and calcification rates were not impacted. As a consequence, bleached A. aspera had significantly lower (− 13%) surface O2 concentrations during the day than healthy corals, with concentrations being lower than that of the ambient seawater, thus resulting in O2 uptake from the seawater. Furthermore, we show here that Acropora, and potentially branching corals in general, have among the lowest surface pH elevation of all corals studied to date (0.041 units), which could contribute to their higher sensitivity to ocean acidification. Additionally, bleached A. aspera no longer elevated their surface pH above ambient seawater values and, therefore, had essentially no [H+] CBL. These findings demonstrate that heat stress-induced bleaching has negative effects on pH elevation and [H+] CBL thickness, which may increase the overall susceptibility of coral to the combined impacts of ocean acidification and warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Agostini S, Fujimura H, Higuchi T, Yuyama I, Casareto BE, Suzuki Y, Nakano Y (2013) The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis. Comptes Rendus Biologies 336:384–391

    Article  CAS  PubMed  Google Scholar 

  • Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Scientia Marina 69:347–354

    Article  CAS  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, De Beer D (2003a) Microsensor study of photosynthesis and calcification in the sceractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Biol Ecol 288:1–15

    Article  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003b) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    Article  CAS  Google Scholar 

  • Baird A, Marshall P (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141

    Article  Google Scholar 

  • Cai W-J, Ma Y, Hopkinson BM, Grottoli AG, Warner ME, Ding Q, Hu X, Yuan X, Schoepf V, Xu H, Han C, Melman TF, Hoadley KD, Pettay DT, Matsui Y, Baumann JH, Levas S, Ying Y, Wang Y (2016) Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat Comm 7:11144

    Article  CAS  Google Scholar 

  • Chan NCS, Wangpraseurt D, Kühl M, Connolly S (2016) Flow and coral morphology control coral surface pH: Implications for the effects of ocean acidification. Frontiers in Marine Science 3:https://doi.org/10.3389/fmars.2016.00010

  • Cornwall CE, Hepburn CD, Pilditch CA, Hurd CL (2013) Concentration boundary layers around complex assemblages of macroalgae: Implications for the effects of ocean acidification on understory coralline algae. Limnol Oceanogr 58:121–130

    Article  CAS  Google Scholar 

  • Cornwall CE, Boyd PW, McGraw CM, Hepburn CD, Pilditch CA, Morris JN, Smith AM, Hurd CL (2014) Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS One 9:e97235

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Olivo JP, McCulloch MT (2017) Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress. Sci Rep 7:2207

    Article  PubMed  PubMed Central  Google Scholar 

  • Dandan SS, Falter JL, Lowe RJ, McCulloch MT (2015) Resilience of coral calcification to extreme temperature variations in the Kimberley region, northwest Australia. Coral Reefs 34:1151–1163

    Article  Google Scholar 

  • de Beer D, Kühl M, Stambler N, Vaki L (2000) A microsensor study of light enhanced Ca2+ uptake and photosynthesis in the reef-building hermatypic coral Favia sp. Mar Ecol Prog Ser 194:75–85

    Article  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3:191 pp

  • Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Global Change Biol 18:2173–2183

    Article  Google Scholar 

  • Enríquez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Garcia HE, Gordon LI (1992) Oxygen solubility in seawater: Better fitting equations. Limnol Oceanogr 37:1307–1312

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck R, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge T, Claar DC, Eakin CAM, Gilmour JP, Graham NAJ, Harrison H, Hobbs JPA, Hoey AS, Hoogenboom MO, Lowe RJ, McCulloch M, Pandolfi JM, Pratchett MS, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, C-y Kuo, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • Hurd CL (2015) Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. J Phycol 51:599–605

    Article  CAS  PubMed  Google Scholar 

  • Hurd CL, Cornwall CE, Currie K, Hepburn CD, McGraw CM, Hunter KA, Boyd PW (2011) Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility? Global Change Biol 17:3254–3262

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: The physical science basis. Summary for Policy Makers., http://www.ipcc.ch website

  • Jamieson D, Chance B, Cadenas E, Boveris A (1986) The relation of free radical production to hyperoxia. Annual Review of Physiology 48:703–719

    Article  CAS  PubMed  Google Scholar 

  • Jimenez IM, Kühl M, Larkum AWD, Ralph PJ (2011) Effects of flow and colony morphology on the thermal boundary layer of corals. J R Soc Interface 8:1785–1795

    Article  PubMed  PubMed Central  Google Scholar 

  • Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: Stoddart DR, Johannes RE (eds) Coral Reefs: Resesarch Methods. UNESCO, Paris, pp 529–541

    Google Scholar 

  • Jorgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30:112–122

    Article  Google Scholar 

  • Koren K, Jakobsen SL, Kühl M (2016) In-vivo imaging of O2 dynamics on coral surfaces spray-painted with sensor nanoparticles. Sensors and Actuators B: Chemical 237:1095–1101

    Article  CAS  Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and Light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology. Elsevier

  • Maynard JA, Turner PJ, Anthony KRN, Baird AH, Berkelmans R, Eakin CM, Johnson J, Marshall PA, Packer GR, Rea A, Willis BL (2008) ReefTemp: An interactive monitoring system for coral bleaching using high-resolution SST and improved stress predictors. Geophys Res Lett 35:L05603

    Article  Google Scholar 

  • McCulloch MT, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2:623–627

    Article  CAS  Google Scholar 

  • Nishihara GN, Ackerman JD (2007) On the determination of mass transfer in a concentration boundary layer. Limnol Oceanogr Meth 5:88–96

    Article  CAS  Google Scholar 

  • NOAA (2016) NOAA Coral Reef Watch Climatology version 2 NOAA Coral Reef Watch: Methodology

  • Noisette F, Hurd C (2018) Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Funct Ecol 32:1329–1342

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceanogr 52:1874–1882

    Article  Google Scholar 

  • Schoepf V, Grottoli AG, Warner M, Cai W-J, Melman TF, Hoadley KD, Pettay DT, Hu X, Li Q, Xu H, Wang Y, Matsui Y, Baumann J (2013) Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One 8:e75049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoepf V, McCulloch MT, Warner ME, Levas SJ, Matsui Y, Aschaffenburg M, Grottoli AG (2014) Short-term coral bleaching is not recorded by skeletal boron isotopes. PLoS One 9:e112011

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoepf V, Stat M, Falter JL, McCulloch MT (2015a) Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep 5:17639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoepf V, Grottoli AG, Levas SJ, Aschaffenburg MD, Baumann JH, Matsui Y, Warner ME (2015b) Annual coral bleaching and the long-term recovery capacity of coral. Proc R Soc B 282:20151887

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoepf V, Jury CP, Toonen RJ, McCulloch MT (2017) Coral calcification mechanisms facilitate adaptive responses to ocean acidification. Proc R Soc B: Biol Sci 284:20172117

    Article  Google Scholar 

  • Shashar N, Cohen Y, Loya Y (1993) Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol Bull 185:455–461

    Article  CAS  PubMed  Google Scholar 

  • Siebeck UE, Marshall NJ, Klüter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching using a colour reference card. Coral Reefs 25:453–460

    Article  Google Scholar 

  • Towle EK, Enochs IC, Langdon C (2015) Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS One 10:e0123394

    Article  PubMed  PubMed Central  Google Scholar 

  • Venn AA, Tambutte E, Holcomb M, Laurent J, Allemand D, Tambutte S (2013) Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc Natl Acad Sci 110:1634–1639

    Article  CAS  PubMed  Google Scholar 

  • Wangpraseurt D, Larkum AWD, Ralph PJ, Kühl M (2012) Light gradients and optical microniches in coral tissues. Front Microbiol 3:https://doi.org/10.3389/fmicb.2012.00316

Download references

Acknowledgements

Funding for this study was provided by the Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, the Western Australian Marine Science Institution (WAMSI), an ARC Laureate Fellowship awarded to MM and an ARC DECRA Award (DE160100668) awarded to SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Schoepf.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Simon Davy

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoepf, V., Cornwall, C.E., Pfeifer, S.M. et al. Impacts of coral bleaching on pH and oxygen gradients across the coral concentration boundary layer: a microsensor study. Coral Reefs 37, 1169–1180 (2018). https://doi.org/10.1007/s00338-018-1726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-1726-6

Keywords

Navigation