Coral Reefs

, Volume 37, Issue 1, pp 135–144 | Cite as

Mesopredator trophodynamics on thermally stressed coral reefs

  • Tessa N. HempsonEmail author
  • Nicholas A. J. Graham
  • M. Aaron MacNeil
  • Andrew S. Hoey
  • Glenn R. Almany


Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The ‘tolerant’ reef treatment consisted only of coral taxa of low susceptibility to bleaching, while ‘vulnerable’ reefs included species of moderate to high thermal vulnerability. ‘Vulnerable’ reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on ‘tolerant’ reefs. Fish assemblages on ‘tolerant’ reefs were also more strongly influenced by the introduction of a mesopredator (Cephalopholis boenak). Mesopredators on ‘tolerant’ reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.


Climate change Coral bleaching Functional group Habitat degradation Mesopredator Trophic structure 



The authors would like to thank the Lizard Island Research Station and its directors Lyle Vail and Anne Hoggett for all the logistical support and facilities they provided for the field component of this research. This research was conducted under animal ethics approval from James Cook University (Ethics approval number A1996). This research was supported by the Australian Research Council and the Australian Institute for Marine Science.

Supplementary material

338_2017_1639_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 37 kb)


  1. Alvarez-Filip L, Gill JA, Dulvy NK (2011) Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2:1–17CrossRefGoogle Scholar
  2. Alvarez-Filip L, Carricart-Ganivet JP, Horta-Puga G, Iglesias-Prieto R (2013) Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci Rep 3:3486CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bagenal TB, Tesch FW (1978) Age and growth. In: Bagenal TB (ed) Methods for assessment of fish production in fresh water. Blackwell Scientific Publications, OxfordGoogle Scholar
  4. Berumen ML, Pratchett MS, McCormick MI (2005) Within-reef differences in diet and body condition of coral-feeding butterflyfishes (Chaetodontidae). Mar Ecol Prog Ser 287:217–227CrossRefGoogle Scholar
  5. Beukers JS, Jones GP (1997) Habitat complexity modifes the impact of piscivores on a coral reef fish population. Oecologia 114:50–59CrossRefGoogle Scholar
  6. Beukers-Stewart BD, Jones GP (2004) The influence of prey abundance on the feeding ecology of two piscivorous species of coral reef fish. J Exp Mar Bio Ecol 299:155–184CrossRefGoogle Scholar
  7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefPubMedGoogle Scholar
  8. Brandt JS, Haynes MA, Kuemmerle T, Waller DM, Radeloff VC (2013) Regime shift on the roof of the world: alpine meadows converting to shrublands in the southern Himalayas. Biol Conserv 158:116–127CrossRefGoogle Scholar
  9. Buitenwerf R, Bond WJ, Stevens N, Trollope WSW (2012) Increased tree densities in South African savannas: > 50 years of data suggests CO2 as a driver. Glob Chang Biol 18:675–684CrossRefGoogle Scholar
  10. Byrnes JE, Reed DC, Cardinale BJ, Cavanaugh KC, Holbrook SJ, Schmitt RJ (2011) Climate-driven increases in storm frequency simplify kelp forest food webs. Glob Chang Biol 17:2513–2524CrossRefGoogle Scholar
  11. Chan TTC, Sadovy Y (2002) Reproductive biology, age and growth in the chocolate hind, Cephalopholis boenak (Bloch, 1790), in Hong Kong. Mar Freshw Res 53:791–803CrossRefGoogle Scholar
  12. Cinner JE, McClanahan TR, Graham NAJ, Pratchett MS, Wilson SK, Raina JB (2009) Gear-based fisheries management as a potential adaptive response to climate change and coral mortality. J Appl Ecol 46:724–732CrossRefGoogle Scholar
  13. Cinner JE, Huchery C, Darling ES, Humphries AT, Graham NAJ, Hicks CC, Marshall N, McClanahan TR (2013) Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS One 8:e74321CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cohen LA, Pichegru L, Grémillet D, Coetzee J, Upfold L, Ryan PG (2014) Changes in prey availability impact the foraging behaviour and fitness of Cape gannets over a decade. Mar Ecol Prog Ser 505:281–293CrossRefGoogle Scholar
  15. Coker DJ, Wilson SK, Pratchett MS (2014) Importance of live coral habitat for reef fishes. Rev Fish Biol Fish 24:89–126CrossRefGoogle Scholar
  16. Darling ES, McClanahan TR, Côté IM (2013) Life histories predict coral community disassembly under multiple stressors. Glob Chang Biol 19:1930–1940CrossRefPubMedGoogle Scholar
  17. Darling ES, Graham NAJ, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK (2017) Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36:561–575CrossRefGoogle Scholar
  18. DeMartini EE, Anderson TW, Kenyon JC, Beets JP, Friedlander AM (2010) Management implications of juvenile reef fish habitat preferences and coral susceptibility to stressors. Mar Freshw Res 61:532–540CrossRefGoogle Scholar
  19. Duffy JE, Lefcheck JS, Stuart-Smith RD, Navarrete SA, Edgar GJ (2016) Biodiversity enhances reef fish biomass and resistance to climate change. Proc Natl Acad Sci U S A 113:6230–6235CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fabina NS, Baskett ML, Gross K (2015) The differential effects of increasing frequency and magnitude of extreme events on coral populations. Ecol Appl 25:1534–1545CrossRefPubMedGoogle Scholar
  21. Feary DA, McCormick MI, Jones GP (2009) Growth of reef fishes in response to live coral cover. J Exp Mar Bio Ecol 373:45–49CrossRefGoogle Scholar
  22. Froese R, Pauly D (2016) FishBase,, version 10/2016
  23. Great Barrier Reef Marine Park Authority (2014) Great Barrier Reef Outlook Report 2014. GBRMPA, TownvilleGoogle Scholar
  24. Graham NAJ (2014) Habitat complexity: coral structural loss leads to fisheries declines. Curr Biol 24:R359–R361CrossRefPubMedGoogle Scholar
  25. Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326CrossRefGoogle Scholar
  26. Graham NAJ, Cinner JE, Norström AV, Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustain 7:9–14CrossRefGoogle Scholar
  27. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J, Bijoux JP, Daw TM (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv Biol 21:1291–1300CrossRefPubMedGoogle Scholar
  28. Gross K, Cardinale BJ, Fox JW, Gonzalez A, Loreau M, Polley HW, Reich PB, van Ruijven J, Wayne Polley H, Reich PB, van Ruijven J (2014) Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am Nat 183:1–12CrossRefPubMedGoogle Scholar
  29. Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189CrossRefPubMedGoogle Scholar
  30. Hempson TN, Graham NA, MacNeil MA, Bodin N, Wilson SK (2017a) Regime shifts shorten food chains for mesopredators with potential sublethal effects. Func Ecol.
  31. Hempson TN, Graham NA, MacNeil MA, Hoey AS, Wilson SK (2017b) Ecosystem regime shifts disrupt trophic structure. Ecol Appl.
  32. Hempson TN, Graham NA, MacNeil MA, Williamson DH, Jones GP, Almany GR (2017c) Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol Evol 7:2626–2635CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hixon MA, Beets JP (1993) Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol Monogr 63:77–101CrossRefGoogle Scholar
  34. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528CrossRefPubMedGoogle Scholar
  35. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  36. Holbrook SJ, Schmitt RJ (2002) Competition for shelter space causes density-dependent predation mortality in damselfishes. Ecology 83:2855–2868CrossRefGoogle Scholar
  37. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-Y, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and mass bleaching of corals. Nature 543:373–377CrossRefPubMedGoogle Scholar
  38. Jones GP, McCormick MI (2002) Numerical and energetic processes in the ecology of coral reef fishes. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 221–238CrossRefGoogle Scholar
  39. Jonsson B, Jonsson N, Finstad AG (2013) Effects of temperature and food quality on age and size at maturity in ectotherms: an experimental test with Atlantic salmon. J Anim Ecol 82:201–210CrossRefPubMedGoogle Scholar
  40. Kerry JT, Bellwood DR (2012) The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs 31:415–424CrossRefGoogle Scholar
  41. Kok JE, Graham NAJ, Hoogenboom MO (2016) Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes. Coral Reefs 35:473–483CrossRefGoogle Scholar
  42. Kokita T, Nakazono A (2001) Rapid response of an obligately corallivorous filefish Oxymonacanthus longirostris (Monacanthidae) to a mass coral bleaching event. Coral Reefs 20:155–158CrossRefGoogle Scholar
  43. Legović T (1989) Predation in food webs. Ecol Modell 48:267–276CrossRefGoogle Scholar
  44. Loya Sakai, Yamazato Nakano, Van Sambali W (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131CrossRefGoogle Scholar
  45. Luckhurst BE, Luckhurst K (1978) Analysis of the influence of substrate variables on coral reef fish communities. Mar Biol 49:317–323CrossRefGoogle Scholar
  46. MacNeil MA, Drouillard KG, Fisk AT (2006) Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can J Fish Aquat Sci 63:345–353CrossRefGoogle Scholar
  47. Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163CrossRefGoogle Scholar
  48. McCann KS (2000) The diversity–stability debate. Nature 405:228–233CrossRefPubMedGoogle Scholar
  49. McClanahan TR, Ateweberhan M, Graham NAJ, Wilson SK, Ruiz Sebastiàn C, Guillaume MMM, Bruggemann JH (2007) Western Indian Ocean coral communities: bleaching responses and susceptibility to extinction. Mar Ecol Prog Ser 337:1–13CrossRefGoogle Scholar
  50. McClanahan TR, Graham NAJ, MacNeil MA, Muthiga NA, Cinner JE, Bruggemann JH, Wilson SK (2011) Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc Natl Acad Sci U S A 108:17230–17233CrossRefPubMedPubMedCentralGoogle Scholar
  51. Milicich MJ, Doherty PJ (1994) Larval supply of coral reef fish populations—magnitude and synchrony of replenishment to Lizard Island, Great Barrier Reef. Mar Ecol Prog Ser 110:121–134CrossRefGoogle Scholar
  52. Mora C, Aburto-Oropeza O, Ayala-Bocos A, Ayotte PM, Banks S, Bauman AG, Beger M, Bessudo S, Booth DJ, Brokovich E, Brooks A, Chabanet P, Cinner JE, Cortés J, Cruz-Motta JJ, Cupul-Magaña A, DeMartini EE, Edgar GJ, Feary DA, Ferse SCA, Friedlander AM, Gaston KJ, Gough C, Graham NAJ, Green A, Guzman H, Hardt M, Kulbicki M, Letourneur Y, López-Pérez A, Loreau M, Loya Y, Martinez C, Mascareñas-Osorio I, Morove T, Nadon MO, Nakamura Y, Paredes G, Polunin NVC, Pratchett MS, Reyes Bonilla H, Rivera F, Sala E, Sandin SA, Soler G, Stuart-Smith R, Tessier E, Tittensor DP, Tupper M, Usseglio P, Vigliola L, Wantiez L, Williams I, Wilson SK, Zapata FA (2011) Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol 9:e1000606CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM, Broad K, Sanchirico JN, Buch K, Box S, Stoffle RW, Gill AB (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101CrossRefPubMedGoogle Scholar
  54. Mumby PJ, Steneck RS, Edwards AJ, Ferrari R, Coleman R, Harborne AR, Gibson JP (2012) Fishing down a Caribbean food web relaxes trophic cascades. Mar Ecol Prog Ser 445:13–24CrossRefGoogle Scholar
  55. Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285CrossRefGoogle Scholar
  56. Nash KL, Graham NAJ, Wilson SK, Bellwood DR (2013) Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16:478–490CrossRefGoogle Scholar
  57. Nash KL, Graham NAJ, Jennings S, Wilson SK, Bellwood DR, Angeler D (2016) Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J Appl Ecol 53:646–655CrossRefGoogle Scholar
  58. Nyström M, Graham NAJ, Lokrantz J, Norström AV (2008) Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs 27:795–809CrossRefGoogle Scholar
  59. Ostaszewska T, Dabrowski K, Czumińska K, Olech W, Olejniczak M (2005) Rearing of pike-perch larvae using formulated diets—first success with starter feeds. Aquac Res 36:1167–1176CrossRefGoogle Scholar
  60. Pratchett MS, Wilson SK, Baird AH (2006) Declines in the abundance of Chaetodon butterflyfishes following extensive coral depletion. J Fish Biol 69:1269–1280CrossRefGoogle Scholar
  61. Pratchett MS, Hoey AS, Wilson SK (2014) Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr Opin Environ Sustain 7:37–43CrossRefGoogle Scholar
  62. Pratchett MS, Gust N, Goby G, Klanten SO (2001) Consumption of coral propagules represents a significant trophic link between corals and reef fish. Coral Reefs 20:13–17CrossRefGoogle Scholar
  63. Pratchett MS, Wilson SK, Berumen ML, McCormick MI (2004) Sublethal effects of coral bleaching on an obligate coral feeding butterflyfish. Coral Reefs 23:352–356CrossRefGoogle Scholar
  64. Riegl B, Bruckner A, Coles SL, Renaud P, Dodge RE (2009) Coral reefs: threats and conservation in an era of global change. Ann N Y Acad Sci 1162:136–186CrossRefPubMedGoogle Scholar
  65. Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a loss of structural complexity. Curr Biol 24:1000–1005CrossRefPubMedGoogle Scholar
  66. Shpigel M, Fishelson L (1989) Food habits and prey selection of three species of groupers from the genus Cephalopholis (Serranidae: Teleostei). Environ Biol Fishes 24:67–73CrossRefGoogle Scholar
  67. Stallings CD, Coleman FC, Koenig CC, Markiewicz DA (2010) Energy allocation in juveniles of a warm-temperate reef fish. Environ Biol Fishes 88:389–398CrossRefGoogle Scholar
  68. Stevenson RD, Woods WA (2006) Condition indices for conservation: new uses for evolving tools. Integr Comp Biol 46:1169–1190CrossRefPubMedGoogle Scholar
  69. Syms C, Jones GP (2000) Disturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology 81:2714–2729CrossRefGoogle Scholar
  70. Welch BL (1947) The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34:28–35PubMedGoogle Scholar
  71. Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson S (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172CrossRefPubMedGoogle Scholar
  72. Van Woesik R, Sakai K, Ganase A, Loya Y (2011) Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.Lancaster Environment CentreLancaster UniversityLancasterUK
  3. 3.Australian Institute of Marine ScienceTownsvilleAustralia
  4. 4.Department of BiologyDalhousie UniversityHalifaxCanada
  5. 5.5CRIOBE–USR 3278, CNRS–EPHE–UPVD and Laboratoire d’Excellence “CORAIL”Perpignan CedexFrance

Personalised recommendations