Skip to main content

Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa

Abstract

Cladocora caespitosa is the only Mediterranean scleractinian similar to tropical reef-building corals. While this species is part of the recent fossil history of the Mediterranean Sea, it is currently considered endangered due to its decline during the last decades. Environmental factors affecting the distribution and persistence of extensive bank reefs of this endemic species across its whole geographic range are poorly understood. In this study, we examined the environmental response of C. caespitosa and its main types of assemblages using ecological niche modeling and ordination analysis. We also predicted other suitable areas for the occurrence of the species and assessed the conservation effectiveness of Mediterranean marine protected areas (MPAs) for this coral. We found that phosphate concentration and wave height were factors affecting both the occurrence of this versatile species and the distribution of its extensive bioconstructions in the Mediterranean Sea. A set of factors (diffuse attenuation coefficient, calcite and nitrate concentrations, mean wave height, sea surface temperature, and shape of the coast) likely act as environmental barriers preventing the species from expansion to the Atlantic Ocean and the Black Sea. Uncertainties in our large-scale statistical results and departures from previous physiological and ecological studies are also discussed under an integrative perspective. This study reveals that Mediterranean MPAs encompass eight of the ten banks and 16 of the 21 beds of C. caespitosa. Preservation of water clarity by avoiding phosphate discharges may improve the protection of this emblematic species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Aguirre J, Jiménez AP (1998) Fossil analogues of present-day Cladocora caespitosa coral banks: sedimentary setting, dwelling community, and taphonomy (Late Pliocene, W Mediterranean). Coral Reefs 17:203–213

    Article  Google Scholar 

  • Augier H (1982) Inventaire et classification des biocènoses marines benthiques de la Méditerranée. Conseil de l’Europe, Collection Sauvegarde de la Nature, Strasbourg

    Google Scholar 

  • Beale C, Lennon J (2012) Incorporating uncertainty in predictive species distribution modelling. Philos Trans R Soc B Biol Sci 367:247–258

    Article  Google Scholar 

  • Bellan-Santini D, Bellan G, Bitar G, Harmelin J-G, Pergent G (2002) Handbook for interpreting types of marine habitat for the selection of sites to be included in the national inventories of natural sites of conservation interest. UNEP-MAP RAC/SPA, Tunis

    Google Scholar 

  • Bernasconi M, Corselli C, Carobene L (1997) A bank of the scleractinian coral Cladocora caespitosa in the Pleistocene of the Crati Valley (Calabria, Southern Italy): growth versus environmental conditions. Bollettino della Società Paleontologica Italiana 36:53–61

    Google Scholar 

  • Bianchi C (2009) Priority habitats according to the SPA/BIO protocol (Barcelona Convention) present in Italy. Identification sheets. III. 6. 1 14. Facies with Cladocora caespitosa. Biol Mar Mediterr 16:163–166

    Google Scholar 

  • Boudouresque C-F (2004) Marine biodiversity in the Mediterranean: status of species, populations and communities. Scientific Reports of the Port-Cros National Park 20:97–146

    Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell 197:516–519

    Article  Google Scholar 

  • Calenge C, Darmon G, Basille M, Loison A, Jullien J-M (2008) The factorial decomposition of the Mahalanobis distances in habitat selection studies. Ecology 89:555–566

    CAS  Article  PubMed  Google Scholar 

  • Casado-Amezúa P, Kersting DK, Templado J, Machordom A (2014) Regional genetic differentiation among populations of Cladocora caespitosa in the Western Mediterranean. Coral Reefs 33:1031–1040

    Article  Google Scholar 

  • Casado-Amezúa P, Kersting D, Linares CL, Bo M, Caroselli E, Garrabou J, Cerrano C, Ozalp B, Terrón-Sigler A, Betti F (2015) Cladocora caespitosa. The IUCN Red List of Threatened Species 2015: e.T133142A75872554

  • Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett 3:284–293

    Article  Google Scholar 

  • Chefaoui RM (2014) Landscape metrics as indicators of coastal morphology: a multi-scale approach. Ecol Indic 45:139–147

    Article  Google Scholar 

  • Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol Modell 210:478–486

    Article  Google Scholar 

  • Chefaoui RM, Serrão EA (2017) Accounting for uncertainty in predictions of a marine species: integrating population genetics to verify past distributions. Ecol Modell 359:229–239

    Article  Google Scholar 

  • Chefaoui RM, Assis J, Duarte CM, Serrão EA (2016) Large-scale prediction of seagrass distribution integrating landscape metrics and environmental factors: the case of Cymodocea nodosa (Mediterranean–Atlantic). Estuaries and Coasts 39:123–137

    CAS  Article  Google Scholar 

  • Chen Z, Muller-Karger FE, Hu C (2007) Remote sensing of water clarity in Tampa Bay. Remote Sens Environ 109:249–259

    Article  Google Scholar 

  • Clark JD, Dunn JE, Smith KG (1993) A multivariate model of female black bear habitat use for a geographic information system. J Wildl Manage 57:519–526

    Article  Google Scholar 

  • Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis T, Danovaro R, Estrada M, Froglia C, Galil BS, Gasol JM, Gertwagen R, Gil J, Guilhaumon F, Kesner-Reyes K, Kitsos M-S, Koukouras A, Lampadariou N, Laxamana E, López-Fé de la Cuadra CM, Lotze HK, Martin D, Mouillot D, Oro D, Raicevich S, Rius-Barile J, Saiz-Salinas JI, San Vicente C, Somot S, Templado J, Turon X, Vafidis D, Villanueva R, Voultsiadou E (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:e11842

    Article  PubMed  PubMed Central  Google Scholar 

  • Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA 106:6176–6181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cuerda J, Antich S, Soler A (1986) Las formaciones Cuaternarias marinas de Cala Pi (Mallorca). Bolleti de la Societat d’Historia Natural de les Balears 30:95–104

    Google Scholar 

  • Dabrio CJ, Esteban M, Martin JM (1981) The coral reef of Nijar, Messinian (Uppermost Miocene), Almeria Province, S. E. Spain. J Sediment Res 51:521–539

    Google Scholar 

  • El Kateb A, Stalder C, Neururer C, Pisapia C, Spezzaferri S (2016) Correlation between pollution and decline of scleractinian Cladocora caespitosa (Linnaeus, 1758) in the Gulf of Gabes. Heliyon 2:e00195

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    CAS  Article  PubMed  Google Scholar 

  • Falini G, Fermani S, Goffredo S (2015) Coral biomineralization: a focus on intra-skeletal organic matrix and calcification. Semin Cell Dev Biol 46:17–26

    Article  PubMed  Google Scholar 

  • Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol Modell 160:115–130

    CAS  Article  Google Scholar 

  • Ferrier-Pagès C, Gevaert F, Reynaud S (2013) In situ assessment of the daily primary production of the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 58:1409–1418

    Article  Google Scholar 

  • Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynaud S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438

    Article  Google Scholar 

  • Fonvielle JA, Reynaud S, Jacquet S, LeBerre B, Ferrier-Pages C (2015) First evidence of an important organic matter trophic pathway between temperate corals and pelagic microbial communities. PLoS One 10:e0139175

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Pérez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103

    Article  Google Scholar 

  • Hijmans RJ (2016) raster: geographic data analysis and modeling. R package version 2.5-8

  • Hirzel A, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    CAS  Article  PubMed  Google Scholar 

  • Hoogenboom MO, Connolly SR, Anthony KRN (2008) Interactions between morphological and physiological plasticity optimize energy acquisition in corals. Ecology 89:1144–1154

    Article  PubMed  Google Scholar 

  • Hoogenboom M, Rodolfo-Metalpa R, Ferrier-Pagès C (2010) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J Exp Biol 213:2399–2409

    Article  PubMed  Google Scholar 

  • Hortal J, Jiménez-Valverde A, Gómez J, Lobo J, Baselga A (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858

    Article  Google Scholar 

  • Huot Y, Brown CA, Cullen JJ (2005) New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products. Limnol Oceanogr Methods 3:108–130

    CAS  Article  Google Scholar 

  • Jiménez C, Hadjioannou L, Petrou A, Nikolaidis A, Evriviadou M, Lange MA (2014) Mortality of the scleractinian coral Cladocora caespitosa during a warming event in the Levantine Sea (Cyprus). Reg Environ Change 16:1963–1973

    Article  Google Scholar 

  • Kadmon R, Farber O, Danin A (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413

    Article  Google Scholar 

  • Kersting DK, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:427–436

    Article  Google Scholar 

  • Kersting DK, Bensoussan N, Linares C (2013a) Long-term responses of the endemic reef-builder Cladocora caespitosa to Mediterranean warming. PLoS One 8:e70820

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kersting DK, Teixidó N, Linares C (2014a) Recruitment and mortality of the temperate coral Cladocora caespitosa: implications for the recovery of endangered populations. Coral Reefs 33:403–407

    Article  Google Scholar 

  • Kersting DK, Casado C, López-Legentil S, Linares C (2013b) Unexpected patterns in the sexual reproduction of the Mediterranean coral Cladocora caespitosa. Mar Ecol Prog Ser 486:165–171

    Article  Google Scholar 

  • Kersting DK, Ballesteros E, De Caralt S, Linares C (2014b) Invasive macrophytes in a marine reserve (Columbretes Islands, NW Mediterranean): spread dynamics and interactions with the endemic scleractinian coral Cladocora caespitosa. Biol Invasions 16:1599–1610

    Google Scholar 

  • Kersting DK, Cebrian E, Verdura J, Ballesteros E (2017) Rolling corals in the Mediterranean Sea. Coral Reefs 36:245

    Article  Google Scholar 

  • Kersting DK, Cebrián Pujol E, Verdura J, Ballesteros i Segarra E (2017b) A new Cladocora caespitosa population with unique ecological traits. Mediterr Marine Sci 18(1):38–42

  • Kersting DK, Cebrian E, Casado C, Teixidó N, Garrabou J, Linares C (2015) Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral. Sci Rep 5:18635

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Koukouras A, Kühlmann D, Voultsiadou E, Vafidis D, Dounas C, Chintiroglou C, Koutsoubas D (1998) The macrofaunal assemblage associated with the scleractinian coral Cladocora caespitosa (L.) in the Aegean Sea. Annales de l’Institut Océanographique, Paris 74:97–114

    Google Scholar 

  • Kružić P (2007) Anthozoan fauna of Telascica Nature Park (Adriatic Sea, Croatia). Natura Croat 16:233–266

    Google Scholar 

  • Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536

    Article  Google Scholar 

  • Kružić P, Požar-Domac A (2007) Impact of tuna farming on the banks of the coral Cladocora caespitosa in the Adriatic Sea. Coral Reefs 26:665

    Article  Google Scholar 

  • Kružić P, Benković L (2008) Bioconstructional features of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea (Croatia). Mar Ecol 29:125–139

    Article  Google Scholar 

  • Kružić P, Žuljević A, Nikolić V (2008a) Spawning of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Southern Adriatic Sea. Coral Reefs 27:337–341

    Article  Google Scholar 

  • Kružić P, Žuljević A, Nikolić V (2008b) The highly invasive alga Caulerpa racemosa var. cylindracea poses a new threat to the banks of the coral Cladocora caespitosa in the Adriatic Sea. Coral Reefs 27:441

    Article  Google Scholar 

  • Kružić P, Sršen P, Benković L (2012) The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea. Facies 58:477–491

    Article  Google Scholar 

  • Kružić P, Rodić P, Popijač A, Sertić M (2016) Impacts of temperature anomalies on mortality of benthic organisms in the Adriatic Sea. Mar Ecol 37:1190–1209

    Article  Google Scholar 

  • Laborel J (1961) Sur un cas particulier de concrétionnement animal: concrétionnement à Cladocora caespitosa dans le Golfe de Talante. Rapports et procès-verbaux des réunions/Conseil permanent international pour l’exploration de la mer 16:430–432

    Google Scholar 

  • Laborel J (1987) Marine biogenic constructions in the Mediterranean. Scientific Reports of the Port-Cros National Park 13:97–126

    Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, Amherst, MA, USA

    Google Scholar 

  • Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. In: Prentice IC, van der Maarel E (eds) Theory and models in vegetation science. Springer, Netherlands, pp 89–107

    Chapter  Google Scholar 

  • Montagna P, McCulloch M, Mazzoli C, Silenzi S, Odorico R (2007) The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: high-resolution (~weekly) trace element systematics. Quat Sci Rev 26:441–462

    Article  Google Scholar 

  • Morri C, Peirano A, Bianchi CN (2001) Is the Mediterranean coral Cladocora caespitosa an indicator of climatic change? Archivio di Oceanografia e Limnologia 22:139–144

    Google Scholar 

  • Morri C, Peirano A, Bianchi CN, Sassarini M (1994) Present-day bioconstructions of the hard coral, Cladocora caespitosa (L.)(Anthozoa, Scleractinia), in the eastern Ligurian Sea (NW Mediterranean). Biol Mar Mediterr 1:371–372

    Google Scholar 

  • Movilla J, Calvo E, Pelejero C, Coma R, Serrano E, Fernández-Vallejo P, Ribes M (2012) Calcification reduction and recovery in native and non-native Mediterranean corals in response to ocean acidification. J Exp Mar Bio Ecol 438:144–153

    CAS  Article  Google Scholar 

  • Notarbartolo di Sciara G, Agardy T (eds) (2010) Overview of scientific findings and criteria relevant to identifying SPAMIs in the Mediterranean open seas, including the deep sea. UNEP-MAP Regional Activity Centre for Specially Protected Areas, Tunis, p 71

    Google Scholar 

  • Oksanen J, Kindt R, Blanchet FG, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R version 2.0-10

  • Peirano A, Morri C, Bianchi C (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201

    Article  Google Scholar 

  • Peirano A, Morri C, Mastronuzzi G, Bianchi CN (1998) The coral Cladocora caespitosa (Anthozoa, Scleractinia) as a bioherm builder in the Mediterranean Sea. Memorie Descrittive della Carta Geologica d’Italia 52:59–74

    Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrù P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Glob Planet Change 40:195–200

    Article  Google Scholar 

  • Perry CT, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427–432

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton and Oxford

    Google Scholar 

  • Pitacco V, Orlando-Bonaca M, Mavric B, Lipej L (2014) Macrofauna associated with a bank of Cladocora Caespitosa (Anthozoa, Scleractinia) in the Gulf of Trieste (Northern Adriatic). Annales: Series Historia Naturalis 24:1–14

  • Pomar L (1991) Reef geometries, erosion surfaces and high-frequency sea-level changes, upper Miocene reef complex, Mallorca, Spain. Sedimentology 38:243–269

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Huot Y, Ferrier-Pagès C (2008a) Photosynthetic response of the Mediterranean zooxanthellate coral Cladocora caespitosa to the natural range of light and temperature. J Exp Biol 211:1579–1586

    CAS  Article  PubMed  Google Scholar 

  • Rodolfo-Metalpa R, Peirano A, Morri C, Bianchi CN (1999) Coral calcification rates in the Mediterranean scleractinian coral Cladocora caespitosa (L. 1767). Proceedings of the Italian Association for Oceanology and Limnology 13:291–299

    Google Scholar 

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2000) Coral mortality in NW Mediterranean. Coral Reefs 19:24

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C, Rodolfo-metalpa R (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Italian Journal of Zoology 72:271–276

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Peirano A, Houlbrèque F, Abbate M, Ferrier-Pagès C (2008b) Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 27:17–25

    Article  Google Scholar 

  • Schiller C (1993) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): I. Distribution and biometry. Mar Ecol 14:205–219

    Article  Google Scholar 

  • Schuhmacher H, Zibrowius H (1985) What is hermatypic? Coral Reefs 4:1–9

    Article  Google Scholar 

  • Simkiss K (1964) Phosphates as crystal poisons of calcification. Biol Rev Camb Philos Soc 39:487–505

    CAS  Article  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B, Skapin SD, Segota S, Jurina I, Vukelić B (2011) Colloid-chemical processes in the growth and design of the bio-inorganic aragonite structure in the scleractinian coral Cladocora caespitosa. J Colloid Interface Sci 354:181–189

    CAS  Article  PubMed  Google Scholar 

  • Stark JD, Donlon CJ, Martin MJ, McCulloch ME (2007) OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. Oceans 2007-Europe, IEEE, pp 1–4

  • Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Templado J (2014) Future trends of Mediterranean biodiversity. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, Dordrecht, Netherlands, pp 479–498

    Chapter  Google Scholar 

  • Tremblay P, Ferrier-Pagès C, Maguer JF, Rottier C, Legendre L, Grover R (2012) Controlling effects of irradiance and heterotrophy on carbon translocation in the temperate coral Cladocora caespitosa. PLoS One 7:e44672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281

    Article  Google Scholar 

  • Vertino A, Stolarski J, Bosellini FR, Taviani M (2014) Mediterranean corals through time: from Miocene to Present. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, Dordrecht, Netherlands, pp 257–274

    Chapter  Google Scholar 

  • Wiley EO, Mcnyset KM, Peterson AT, Robins CR, Stewart AM (2003) Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography 16:120–127

    Article  Google Scholar 

  • Zabala ME, Ballesteros E (1989) Surface-dependent strategies and energy flux in benthic marine communities or, why corals do not exist in the Mediterranean. Scientia Marina 53:3–17

    Google Scholar 

Download references

Acknowledgements

We thank Diego Kersting and an anonymous referee for their useful and constructive comments to improve the manuscript. We also thank Jorge Lobo for his encouragement, and comments on a previous version of the manuscript. Ricardo Aguilar, Enric Ballesteros, Erik Caroselli, Julia Crespo, José Antonio Fayos, Carlos Jiménez, Baris Özalp, Pascal Romans, Manu San Félix, Eduard Serrano, and Alejandro Terrón-Sigler provided us with useful observations on the occurrence of C. caespitosa. RMC was supported by the postdoctoral fellowship SFRH/BPD/85040/2012 from the Fundação para a Ciência e a Tecnologia (FCT, Portugal) and JT by the project ConCoast (CTM2014-57949-R) of the Spanish Ministry of Economy and Competitiveness. This article is a contribution to the European project COCONET from the VII FP of the European Commission. We also acknowledge FCT funding by “UID/Multi/04326/2013” to CCMAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Chefaoui.

Additional information

Communicated by Biology Editor Dr. Mark R. Patterson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 186 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chefaoui, R.M., Casado-Amezúa, P. & Templado, J. Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa . Coral Reefs 36, 1195–1209 (2017). https://doi.org/10.1007/s00338-017-1611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1611-8

Keywords

  • Bioconstructions
  • Conservation
  • Habitat suitability
  • Marine protected areas
  • Niche modeling
  • Scleractinia