Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages

Abstract

Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks. Each pCO2 treatment was replicated across six temperatures (24.0–31.5 °C) that spanned the full seasonal temperature range on a fringing reef in Moorea, French Polynesia, and included one warming treatment (3 °C above daily average temperatures). Temperature and CO2 enrichment had complex, and sometimes interactive, effects on turf metabolism and growth. Photosynthetic and respiration rates were enhanced by increasing temperature, with an interactive effect of CO2 enrichment. Photosynthetic rates were amplified by high CO2 in the warmest temperatures, while the increase in respiration rates with temperature were enhanced under ambient CO2. Epilithic turf growth rates were not affected by temperature, but increased in response to CO2 enrichment. We found that CO2 and temperature interactively affected the endolithic assemblage, with the highest growth rates under CO2 enrichment, but only at the warmest temperatures. These results demonstrate how OA may influence algal physiology and growth across a range of ecologically relevant temperatures, and indicate that the effects of CO2 enrichment on coral-reef turf assemblages can be temperature dependent. The complex effects of CO2 enrichment and temperature across a suite of algal responses illustrates the importance of incorporating multiple stressors into global change experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alsterberg C, Eklöf JS, Gamfeldt L, Havenhand JN, Sundbäck K (2013) Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc Natl Acad Sci USA 110:8603–8608

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Beer S, Koch E (1996) Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar Ecol Prog Ser 141:199–204

    Article  Google Scholar 

  3. Bender D, Diaz-Pulido G, Dove S (2014) Warming and acidification promote cyanobacterial dominance in turf algal assemblages. Mar Ecol Prog Ser 517:271–284

    Article  Google Scholar 

  4. Borowitzka MA (1981) Algae and grazing in coral reef ecosystems. Endeavour 5:99–106

    Article  Google Scholar 

  5. Caldeira K, Wickett ME (2003) Anthropogenic carbon sand ocean pH. Nature 425:365

    CAS  Article  PubMed  Google Scholar 

  6. Campbell JE, Fisch J, Langdon C, Paul VJ (2016) Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35:357–368

    Article  Google Scholar 

  7. Campbell JE, Craft JD, Muehllehner N, Langdon C, Paul VJ (2014) Responses of calcifying algae (Halimeda spp.) to ocean acidification: implications for herbivores. Mar Ecol Prog Ser 514:43–56

    Article  Google Scholar 

  8. Carpenter RC (1985) Relationships between primary production and irradiance in coral-reef algal communities. Limnol Oceanogr 30:784–793

    Article  Google Scholar 

  9. Carpenter RC (1986) Partitioning herbivory and its effects on coral-reef algal communities. Ecol Monogr 56:345–363

    Article  Google Scholar 

  10. Carpenter RC (1990) Competition among marine macroalgae—a physiological perspective. J Phycol 26:6–12

    Article  Google Scholar 

  11. Chan NCS, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Chang Biol 19:282–290

    Article  PubMed  Google Scholar 

  12. Comeau S, Carpenter RC, Edmunds PJ (2013a) Effects of feeding and light intensity on the response of the coral Porites rus to ocean acidification. Mar Biol 160:1127–1134

    Article  Google Scholar 

  13. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013b) The responses of eight coral-reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr 58:388–398

    CAS  Article  Google Scholar 

  14. Comeau S, Carpenter RC, Edmunds PJ (2014a) Effects of irradiance on the response of the coral Acropora pulchra and the calcifying alga Hydrolithon reinboldii to temperature elevation and ocean acidification. J Exp Mar Bio Ecol 453:28–35

    Article  Google Scholar 

  15. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2014b) Diel pCO2 oscillations modulate the response of the coral Acropora hyacinthus to ocean acidification. Mar Ecol Prog Ser 501:99–111

    CAS  Article  Google Scholar 

  16. Connell SD, Russell BD (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc R Soc Lond B Biol Sci 277:1409–1415

    Article  Google Scholar 

  17. Copertino M, Connell SD, Cheshire A (2005) The prevalence and production of turf-forming algae on a temperate subtidal coast. Phycologia 44:241–248

    Article  Google Scholar 

  18. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8

    Article  Google Scholar 

  19. Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony KRN (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162

    Article  PubMed  PubMed Central  Google Scholar 

  20. Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol 48:32–39

    CAS  Article  PubMed  Google Scholar 

  21. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PISCES Special Publication 3. North Pacific Marine Science Organization, Sidney, BC, p 176

    Google Scholar 

  22. Doney SC, Balch WM, Fabry VJ, Feely RA (2009) Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22:16–25

    Article  Google Scholar 

  23. Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410

    CAS  Article  Google Scholar 

  24. Edmunds PJ, Yarid A (2017) The effects of ocean acidification on wound repair in the coral Porites spp. J Exp Mar Bio Ecol 486:98–104

    Article  Google Scholar 

  25. Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Glob Chang Biol 18:2173–2183

    Article  Google Scholar 

  26. Edmunds PJ, Comeau S, Lantz C, Andersson A, Briggs C, Cohen A, Gattuso JP, Grady JM, Gross K, Johnson M, Muller EB (2016) Integrating the effects of ocean acidification across functional scales on tropical coral reefs. BioScience 2016:biw023

    Google Scholar 

  27. Evensen NR, Edmunds PJ (2016) Interactive effects of ocean acidification and neighboring corals on the growth of Pocillopora. Mar Biol 163:1–11

    CAS  Article  Google Scholar 

  28. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    CAS  Article  Google Scholar 

  29. Falkenberg LJ, Russell BD, Connell SD (2013) Contrasting resource limitations of marine primary producers: implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172:575–583

    Article  PubMed  Google Scholar 

  30. Falkenberg LJ, Connell SD, Russell BD (2014) Herbivory mediates the expansion of an algal habitat under nutrient and CO2 enrichment. Mar Ecol Prog Ser 497:87–92

    CAS  Article  Google Scholar 

  31. Fong P, Zedler JB (1993) Temperature and light effects on the seasonal succession of algal communities in shallow coastal lagoons. J Exp Mar Bio Ecol 171:259–272

    Article  Google Scholar 

  32. Gattuso JP, Hansson L (2011) Ocean acidification: background and history. In: Gattuso JP, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, UK, pp 1–20

    Google Scholar 

  33. Ghedini G, Russell BD, Connell SD (2015) Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol Lett 18:182–187

    Article  PubMed  Google Scholar 

  34. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    CAS  Article  PubMed  Google Scholar 

  35. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    CAS  Article  PubMed  Google Scholar 

  36. Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  37. Harris JL, Lewis LS, Smith JE (2015) Quantifying scales of spatial variability in algal turf assemblages on coral reefs. Mar Ecol Prog Ser 532:41–57

    Article  Google Scholar 

  38. Hatcher BG (1988) Coral reef primary productivity: a beggar’s banquet. Trends Ecol Evol 3:106–111

    CAS  Article  PubMed  Google Scholar 

  39. Holbrook GP, Beer S, Spencer WE, Reiskind JB, Davis JS, Bowes G (1988) Photosynthesis in marine macroalgae: evidence for carbon limitation. Can J Bot 66:577–582

    CAS  Article  Google Scholar 

  40. IPCC (2013) Climate change: the physical science basis. Contribution of working group one to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  41. Johnson MD, Carpenter RC (2012) Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. J Exp Mar Bio Ecol 434:94–101

    Article  Google Scholar 

  42. Johnson MD, Moriarty VW, Carpenter RC (2014a) Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PLoS ONE 9:e87678

    Article  PubMed  PubMed Central  Google Scholar 

  43. Johnson MD, Price NN, Smith JE (2014b) Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ 2:e411

    Article  PubMed  PubMed Central  Google Scholar 

  44. Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132

    Article  PubMed  Google Scholar 

  45. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  PubMed  Google Scholar 

  46. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896

    Article  PubMed  PubMed Central  Google Scholar 

  47. Larkum AWD, Koch EMW, Kuhl M (2003) Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs. Mar Biol 142:1073–1082

    CAS  Article  Google Scholar 

  48. Lavigne H, Epitalon JM, Gattuso JP (2014) seacarb: seawater carbonate chemistry with R. R package version 3.0. R Foundation for Statistical Computing, Vienna

  49. Le Campion-Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157

    Article  Google Scholar 

  50. Leichter J (2015) MCR LTER: coral reef: benthic water temperature, ongoing since 2005. Dataset knb-lter.ncr.1035.9, Moorea Coral Reef Long-term. Ecological Research. doi:10.6073/pasta/64651327973d5dfba8ef75f886f7d106

    Google Scholar 

  51. Lenz EA, Edmunds PJ (2017) Branches and plates of the morphologically plastic coral Porites rus are insensitive to ocean acidification and warming. J Exp Mar Bio Ecol 486:188–194

    Article  Google Scholar 

  52. Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol 15:2089–2100

    Article  Google Scholar 

  53. McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417

    Article  Google Scholar 

  54. Ober GT, Diaz-Pulido G, Thornber C (2016) Ocean acidification influences the biomass and diversity of reef-associated turf algal communities. Mar Biol 163:204

    Article  Google Scholar 

  55. Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  56. Porzio L, Garrard SL, Buia MC (2013) The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Mar Biol 160:2247–2259

    CAS  Article  Google Scholar 

  57. Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

    CAS  Article  Google Scholar 

  58. Reyes-Nivia C, Diaz-Pulido G, Kline D, Guldberg OH, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob Chang Biol 19:1919–1929

    Article  PubMed  Google Scholar 

  59. R Core Development Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  60. Russell BD, Thompson J-AI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Chang Biol 15:2153–2162

    Article  Google Scholar 

  61. Schiel DR, Steinbeck JR, Foster MS (2004) Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85:1833–1839

    Article  Google Scholar 

  62. Short J, Kendrick GA, Falter J, McCulloch MT (2014) Interactions between filamentous turf algae and coralline algae are modified under ocean acidification. J Exp Mar Bio Ecol 456:70–77

    Article  Google Scholar 

  63. Steneck R, Dethier M (1988) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  64. Tait LW, Schiel DR (2013) Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages. PLoS ONE 8:e74413

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Tribollet A (2008) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tampanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 67–94

    Google Scholar 

  66. Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochem Cycles 23:3008

    Article  Google Scholar 

  67. Vermeij MJA, van Moorselaar I, Engelhard S, Hornlein C, Vonk SM, Visser PM (2010) The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS ONE 5:e14312

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Worm B, Chapman ARO (1998) Relative effects of elevated grazing pressure and competition from a red algal turf on two post-settlement stages of Fucus evanescens C. Ag. J Exp Mar Bio Ecol 220:247–268

    Article  Google Scholar 

  69. Yokohama Y (1973) A comparative study on photosynthesis temperature relationships and their seasonal changes in marine benthic algae. Int Rev Hydrobiol 58:463–472

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded in part by the US National Science Foundation (OCE 14-15268 to RC Carpenter and PJ Edmunds) and by Grants awarded to NA Price and JE Smith. MDJ thanks RC Carpenter, PJ Edmunds and NA Price for the encouragement, funding and support to implement this experiment. The authors also thank the Scripps family foundation and the Bohn family for their generosity and support; VW Moriarty, E Dohnam, JL Harris, MD Fox, A Emanuel and E Jacobs for field and lab assistance. We thank two anonymous reviewers for constructive and insightful feedback.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maggie D. Johnson.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, M.D., Comeau, S., Lantz, C.A. et al. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages. Coral Reefs 36, 1059–1070 (2017). https://doi.org/10.1007/s00338-017-1597-2

Download citation

Keywords

  • Epilithic algal matrix
  • Global change
  • Photosynthesis
  • Primary production
  • Physiology