Skip to main content

Pre-exposure to simultaneous, but not individual, climate change stressors limits acclimation capacity of Irukandji jellyfish polyps to predicted climate scenarios

An Erratum to this article was published on 07 June 2017

This article has been updated

Abstract

Researchers have investigated the immediate effects of end-of-century climate change scenarios on many marine species, yet it remains unclear whether we can reliably predict how marine species may respond to future conditions because biota may become either more or less resistant over time. Here, we examined the role of pre-exposure to elevated temperature and reduced pH in mitigating the potential negative effects of future ocean conditions on polyps of a dangerous Irukandji jellyfish Alatina alata. We pre-exposed polyps to elevated temperature (28 °C) and reduced pH (7.6), in a full factorial experiment that ran for 14 d. We secondarily exposed original polyps and their daughter polyps to either current (pH 8.0, 25 °C) or future conditions (pH 7.6, 28 °C) for a further 34 d to assess potential phenotypic plastic responses and whether asexual offspring could benefit from parental pre-exposure. Polyp fitness was characterised as asexual reproduction, respiration, feeding, and protein concentrations. Pre-exposure to elevated temperature alone partially mitigated the negative effects of future conditions on polyp fitness, while pre-exposure to reduced pH in isolation completely mitigated the negative effects of future conditions on polyp fitness. Pre-exposure to the dual stressors, however, reduced fitness under future conditions relative to those in the control treatment. Under future conditions, polyps had higher respiration rates regardless of the conditions they were pre-exposed to, suggesting that metabolic rates will be higher under future conditions. Parent and daughter polyps responded similarly to the various treatments tested, demonstrating that parental pre-exposure did not confer any benefit to asexual offspring under future conditions. Importantly, we demonstrate that while pre-exposure to the stressors individually may allow Irukandji polyps to acclimate over short timescales, the stressors are unlikely to occur in isolation in the long term, and thus, warming and acidification in parallel may prevent polyp populations from acclimating to future ocean conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 07 June 2017

    An erratum to this article has been published.

References

  1. Bay RA, Palumbi SR (2015) Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol Evol 7:1602–1612

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Bell G (2013) Evolutionary rescue and the limits of adaptation. Philos Trans R Soc Lond B Biol Sci 368:20120080

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bellantuono AJ, Hoegh-Guldberg O, Rodriguez-Lanetty M (2011) Resistance to thermal stress in corals without changes in symbiont composition. Proc R Soc Lond B Biol Sci 279:1100–1107

    Article  Google Scholar 

  4. Bockmon E, Frieder C, Navarro M, White-Kershek L, Dickson A (2013) Controlled experimental aquarium system for multi-stressor investigation of carbonate chemistry, oxygen saturation, and temperature. Biogeosciences 10:5967–5975

    Article  Google Scholar 

  5. Byrne M, Przeslawski R (2013) Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr Comp Biol 53:582–596

    CAS  Article  PubMed  Google Scholar 

  6. Calow P (1991) Physiological costs of combating chemical toxicants: ecological implications. Comp Biochem Physiol C Comp Pharmacol 100:3–6

    CAS  Article  Google Scholar 

  7. Carrette TJ, Underwood AH, Seymour JE (2012) Irukandji syndrome: a widely misunderstood and poorly researched tropical marine envenoming. Diving Hyperb Med 42:214–223

    PubMed  Google Scholar 

  8. Carrette TJ, Straehler-Pohl I, Seymour J (2014) Early life history of Alatina cf. moseri populations from Australia and Hawaii with implications for taxonomy (Cubozoa: Carybdeida, Alatinidae). PLoS One 9:e84377

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chivers WJ, Walne AW, Hays GC (2017) Mismatch between marine plankton range movements and the velocity of climate change. Nat Commun 8:14434

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Courtney R, Seymour J (2013) Seasonality in polyps of a tropical cubozoan: Alatina nr mordens. PLoS One 8:e69369

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, North Pacific Marine Science Organization, Sidney, BC, Canada, 191 pp

  12. Donelson J, Munday P, McCormick M, Pitcher C (2012) Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat Clim Chang 2:30–32

    Article  Google Scholar 

  13. Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2013) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 160:1835–1843

    CAS  Article  Google Scholar 

  14. Foo SA, Byrne M (2016) Acclimatization and adaptive capacity of marine species in a changing ocean. Adv Mar Biol 74:69–116

    CAS  Article  PubMed  Google Scholar 

  15. Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Chang Biol 18:843–853

    Article  Google Scholar 

  16. Frieder CA, Gonzalez JP, Bockmon EE, Navarro MO, Levin LA (2014) Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae? Glob Chang Biol 20:754–764

    Article  PubMed  Google Scholar 

  17. Gershwin LA, De Nardi M, Winkel KD, Fenner PJ (2010) Marine stingers: review of an under-recognized global coastal management issue. Coast Manage 38:22–41

    Article  Google Scholar 

  18. Gershwin LA, Condie SA, Mansbridge JV, Richardson AJ (2014) Dangerous jellyfish blooms are predictable. J R Soc Interface 11:20131168

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gibbin EM, Putnam HM, Davy SK, Gates RD (2014) Intracellular pH and its response to CO2-driven seawater acidification in symbiotic versus non-symbiotic coral cells. J Exp Biol 217:1963–1969

    Article  PubMed  Google Scholar 

  20. Grady JD, Burnett JW (2003) Irukandji-like syndrome in South Florida divers. Ann Emerg Med 42:763–766

    Article  PubMed  Google Scholar 

  21. Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–1030

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hettinger A, Sanford E, Hill TM, Russell AD, Sato KN, Hoey J, Forsch M, Page HN, Gaylord B (2012) Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93:2758–2768

    Article  PubMed  Google Scholar 

  23. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:e28983

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

  25. Klein SG, Pitt KA, Rathjen KA, Seymour JE (2014) Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors. Glob Chang Biol 20:28–37

    Article  PubMed  Google Scholar 

  26. Klein SG, Pitt KA, Nitschke MR, Goyen S, Welsh DT, Suggett DJ, Carroll AR (2017) Symbiodinium mitigate the combined effects of hypoxia and acidification on a non-calclifying cnidarian. Glob Chang Biol. doi:10.1111/gcb.13718

    Google Scholar 

  27. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso J (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896

    Article  PubMed  PubMed Central  Google Scholar 

  28. Laurent J, Tambutté S, Tambutté É, Allemand D, Venn A (2013) The influence of photosynthesis on host intracellular pH in scleractinian corals. J Exp Biol 216:1398–1404

    CAS  Article  PubMed  Google Scholar 

  29. Laurent J, Venn A, Tambutté É, Ganot P, Allemand D, Tambutté S (2014) Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis. FEBS J 281:683–695

    CAS  Article  PubMed  Google Scholar 

  30. Lawley JW, Ames CL, Bentlage B, Yanagihara A, Goodwill R, Kayal E, Hurwitz K, Collins AG (2016) Box jellyfish Alatina alata has a circumtropical distribution. Biol Bull 231:152–169

    Article  PubMed  Google Scholar 

  31. Lemoine NP, Burkepile DE (2012) Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93:2483–2489

    Article  PubMed  Google Scholar 

  32. Lewis E, Wallace D, Allison LJ (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, US Department of Energy, TN

  33. Logan CA, Dunne JP, Eakin CM, Donner SD (2014) Incorporating adaptive responses into future projections of coral bleaching. Glob Chang Biol 20:125–139

    Article  PubMed  Google Scholar 

  34. Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels. Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118

    Article  Google Scholar 

  35. Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211:1050–1056

    Article  PubMed  Google Scholar 

  36. Miller GM, Watson S-A, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim Chang 2:858–861

    CAS  Article  Google Scholar 

  37. Moya A, Huisman L, Ball E, Hayward D, Grasso L, Chua C, Woo H, Gattuso JP, Foret S, Miller DJ (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol 21:2440–2454

    CAS  Article  PubMed  Google Scholar 

  38. Munday PL (2014) Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep 6:99

  39. Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ (2013) Predicting evolutionary responses to climate change in the sea. Ecol Lett 16:1488–1500

    Article  PubMed  Google Scholar 

  40. Nagelkerken I, Munday PL (2015) Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob Chang Biol 22:974–989

    Article  PubMed  Google Scholar 

  41. Nagelkerken I, Pitt KA, Rutte MD, Geertsma RC (2016) Ocean acidification alters fish–jellyfish symbiosis. Proc R Soc Lond B Biol Sci 283:20161146

    Article  Google Scholar 

  42. Oliver T, Palumbi S (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440

    Article  Google Scholar 

  43. Parker LM, O’Connor WA, Raftos DA, Pörtner HO, Ross PM (2015) Persistence of positive carryover effects in the oyster Saccostrea glomerata, following transgenerational exposure to ocean acidification. PLoS One 10:e0132276

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pennington JT, Chavez FP (2000) Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989–1996 in Monterey Bay, California. Deep Sea Res Part 2 Top Stud Oceanogr 47:947–973

  45. Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD, Jaris HK, LaVigne M, Lenz EA, Russell AD, Young MK (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci U S A 110:6937–6942

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Pommier P, Coulange M, De Haro L (2005) Systemic envenomation by jellyfish in Guadeloupe: Irukandji-like syndrome? Med Trop (Mars) 65:367–369

    CAS  Google Scholar 

  47. Pörtner H (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  48. Pörtner HO, Bock C (2000) A contribution of acid–base regulation to metabolic depression in marine ectotherms. In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer, Berlin Heidelberg, pp 443–458

    Chapter  Google Scholar 

  49. Pörtner HO, Peck LS, Hirse T (2006) Hyperoxia alleviates thermal stress in the Antarctic bivalve, Laternula elliptica: evidence for oxygen limited thermal tolerance. Polar Biol 29:688–693

    Article  Google Scholar 

  50. Putnam HM, Gates RD (2015) Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J Exp Biol 218:2365–2372

    Article  PubMed  Google Scholar 

  51. Reipschläger A, Pörtner H-O (1996) Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. J Exp Biol 199:1801–1807

    Google Scholar 

  52. Sokolova IM (2013) Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr Comp Biol 2013:ict028

  53. Suckling CC, Clark MS, Beveridge C, Brunner L, Hughes AD, Harper EM, Cook EJ, Davies AJ, Peck LS (2014) Experimental influence of pH on the early lifestages of sea urchins II: increasing parental exposure times gives rise to different responses. Invertebr Reprod Dev 58:161–175

    CAS  Article  Google Scholar 

  54. Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TB (2014) Evolution in an acidifying ocean. Trends Ecol Evol 29:117–125

    Article  PubMed  Google Scholar 

  55. Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob Chang Biol 21:2261–2271

    Article  PubMed  Google Scholar 

  56. Towle EK, Baker AC, Langdon C (2016) Preconditioning to high CO2 exacerbates the response of the Caribbean branching coral Porites porites to high temperature stress. Mar Ecol Prog Ser 546:75–84

    CAS  Article  Google Scholar 

  57. van Oppen MJ, Oliver JK, Putnam HM, Gates RD (2015) Building coral reef resilience through assisted evolution. Proc Natl Acad Sci U S A 112:2307–2313

    Article  PubMed  PubMed Central  Google Scholar 

  58. Verhoeven KJ, Jansen JJ, Van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    CAS  Article  PubMed  Google Scholar 

  59. Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc Lond B Biol Sci 275:1767–1773

    Article  Google Scholar 

  60. Yoshimoto CM, Yanagihara AA (2002) Cnidarian (coelenterate) envenomations in Hawai’i improve following heat application. Trans R Soc Trop Med Hyg 96:300–303

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by Griffith University and an Australian Postgraduate Award to S.G.K. We thank W. Bennett, F. Leusch, D. Welsh, and D. Tonzing for technical assistance and J. Arthur and J. Hay for statistical advice. We also thank R. Courtney and J. Seymour from James Cook University, Townsville, for cultures of A. alata polyps.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shannon G. Klein.

Additional information

Communicated by Biology Editor Dr. Line K. Bay

An erratum to this article is available at https://doi.org/10.1007/s00338-017-1599-0.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 234 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klein, S.G., Pitt, K.A. & Carroll, A.R. Pre-exposure to simultaneous, but not individual, climate change stressors limits acclimation capacity of Irukandji jellyfish polyps to predicted climate scenarios. Coral Reefs 36, 987–1000 (2017). https://doi.org/10.1007/s00338-017-1590-9

Download citation

Keywords

  • Acclimatisation
  • Preconditioning
  • Metabolism
  • Acidification
  • Warming
  • pCO2