Abstract
Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish (Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds (n = 35) far outnumbering those indicating self-recruitment (n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population connectivity via larval dispersal to sustain reef-fish populations within these networks.
This is a preview of subscription content, access via your institution.




References
Abesamis RA, Russ GR (2010) Patterns of recruitment of coral reef fishes in a monsoonal environment. Coral Reefs 29:911–921
Abesamis RA, Jadloc CRL, Russ GR (2015) Varying annual patterns of reproduction in four species of coral reef fish in a monsoonal environment. Mar Biol 162:1993–2006
Alcala AC, Russ GR (2006) No-take marine reserves and reef fisheries management in the Philippines: a new people power revolution. Ambio 35:245–254
Almany GR, Hamilton RJ, Bode M, Matawai M, Potuku T, Saenz-Agudelo P, Planes S, Berumen ML, Rhodes KL, Thorrold SR, Russ GR, Jones GP (2013) Dispersal of grouper larvae drives local resource sharing in a coral reef fishery. Curr Biol 23:626–630
Ban NC, Adams VM, Almany GR, Ban S, Cinner JE, McCook LJ, Mills M, Pressey RL, White AW (2011) Designing, implementing and managing marine protected areas: emerging trends and opportunities for coral reef nations. J Exp Mar Biol Ecol 408:21–31
Berumen ML, Almany GR, Planes S, Jones GP, Saenz-Agudelo P, Thorrold SR (2012) Persistence of self-recruitment and patterns of larval connectivity in a marine protected area network. Ecol Evol 2:444–452
Bode M, Williamson D, Harrison H, Outram N, Jones GP (2016) Estimating dispersal kernels using genetic parentage data. bioRxiv. doi:10.1101/044305
Botsford LW, Hastings A, Gaines SD (2001) Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecol Lett 4:144–150
Burgess SC, Nickols KJ, Griesemer CD, Barnett LAK, Dedrick AG, Satterthwaite EV, Yamane L, Morgan SG, White JW, Botsford LW (2014) Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected area design. Ecol Appl 24:257–270
Claydon JAB, McCormick MI, Jones GP (2014) Multispecies spawning sites for fishes on a low-latitude coral reef: spatial and temporal patterns. J Fish Biol 84:1136–1163
Cook GS, Parnell PE, Levin LA (2014) Population connectivity shifts at high frequency within an open-coast marine protected area network. PLoS ONE 9:e103654
Cowen RK (2006) Larval dispersal and retention and consequences for population connectivity. In: Sale PF (ed) Coral reef fishes—dynamics and diversity in a complex ecosystem. Elsevier, London, pp 149–170
D’Aloia CC, Bogdanowicz SM, Francis RK, Majoris JE, Harrison RG, Buston PM (2015) Patterns, causes, and consequences of marine larval dispersal. Proc Natl Acad Sci USA 112:13940–13945
Fernandes L, Green A, Tanzer J, White A, Aliño PM, Jompa J, Lokani P, Soemodinoto A, Knight M, Pomeroy R, Possingham H, Pressey RL (2012) Biophysical principles for designing resilient networks of marine protected areas to integrate fisheries, biodiversity and climate change objectives in the Coral Triangle—final report. The Nature Conservancy for the Coral Triangle Support Partnership, Arlington
Gaines SD, White C, Carr MH, Palumbi SR (2010) Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci USA 107:18286–18293
Gerber S, Chabrier P, Kremer A (2003) FAMOZ: a software for parentage analysis using dominant, co-dominant and uni-parentally inherited markers. Mol Ecol Notes 3:479–481
Gordon AL, Sprintall J, Ffield A (2011) Regional oceanography of the Philippine archipelago. Oceanography 24:14–27
Green AL, Maypa AP, Almany GR, Rhodes KL, Weeks R, Abesamis RA, Gleason MG, Mumby PJ, White AT (2015) Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol Rev 90:1215–1247
Green A, Smith E, Lipsett-Moore G, Groves G, Peterson N, Sheppard S, Lokani P, Hamilton R, Almany J, Aitsi J, Bualia L (2009) Designing a resilient network of marine protected areas for Kimbe Bay, Papua New Guinea. Oryx 43:488–498
Grorud-Colvert K, Claudet J, Tissot BN, Caselle JE, Carr MH, Day JC, Friedlander AM, Lester SE, Lison de Loma T, Malone D, Walsh WJ (2014) Marine protected area networks: assessing whether the whole is greater than the sum of its parts. PLoS ONE 9:e102298
Hamilton RJ, Potuku T, Montambault J (2011) Community-based conservation results in the recovery of reef fish spawning aggregations in the Coral Triangle. Biol Conserv 144:1850–1858
Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, van Herwerden L, Planes S, Srinivasan M, Berumen ML, Jones GP (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22:1023–1028
Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML (2013) Relative accuracy of three common methods of parentage analysis in natural populations. Mol Ecol 22:1158–1170
Honda K, Nakamura Y, Nakaoka M, Uy WH, Fortes MD (2013) Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE 8:e65735
Hopf JK, Jones GP, Williamson DH, Connolly SR (2016) Fishery consequences of marine reserves: short-term pain for longer-term gain. Ecol Appl 26:818–829
Horigue V, Aliño PM, White AT, Pressey RL (2012) Marine protected area networks in the Philippines: trends and challenges for establishment and governance. Ocean Coast Manag 64:15–26
Horigue V, Pressey RL, Mills M, Brotánková J, Cabral R, Andréfouët S (2016) Benefits and challenges of scaling up expansion of marine protected area networks in the Verde Island Passage, central Philippines. PLoS ONE 10:e0135789
Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325
Leahy SM, Russ GR, Abesamis RA (2015) Pelagic larval duration and settlement size of a reef fish are spatially consistent, but post-settlement growth varies at the reef scale. Coral Reefs 34:1283–1296
Leis JM (1989) Larval biology of butterflyfishes (Pisces, Chaetodontidae): what do we really know? Environ Biol Fishes 25:87–100
Lester SE, Ruttenberg BI (2005) The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis. Proc R Soc Lond B Biol Sci 272:585–591
Lowry GK, White AT, Christie P (2009) Scaling up to networks of marine protected areas in the Philippines: biophysical, legal, institutional and social considerations. Coast Manag 37:274–290
McCook LJ, Almany GR, Berumen ML, Day JC, Green AL, Jones GP, Leis JM, Planes S, Russ GR, Sale PF, Thorrold SR (2009) Management under uncertainty: guide-lines for incorporating connectivity into the protection of coral reefs. Coral Reefs 28:353–366
Mills M, Pressey RL, Weeks R, Foale S, Ban NC (2010) A mismatch of scales: challenges in planning for implementation of marine protected areas in the Coral Triangle. Conserv Lett 3:291–303
Mora C, Andréfouët S, Costello MJ, Kranenburg C, Rollo A, Veron J, Gaston KJ, Myers RA (2006) Coral reefs and the global network of marine protected areas. Science 312:1750–1751
Nañola CL Jr, Aliño PM, Carpenter KC (2011) Exploitation-related reef fish species richness depletion in the epicenter of marine biodiversity. Environ Biol Fishes 90:405–420
Newton K, Côté IM, Pilling GM, Jennings S, Dulvy NK (2007) Current and future sustainability of island coral reef fisheries. Curr Biol 17:655–658
Pelc RA, Warner RR, Gaines SD, Paris CB (2010) Detecting larval export from marine reserves. Proc Natl Acad Sci USA 107:18266–18271
Pineda J, Hare JA, Sponaugle S (2007) Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20:22–39
Pinsky ML, Montes HR Jr, Palumbi SR (2010) Using isolation by distance and effective density to estimate dispersal scales in anemonefish. Evolution 64:2688–2700
Pinsky ML, Palumbi SR, Andréfouët S, Purkis SJ (2012) Open and closed seascapes: where does habitat patchiness create populations with high fractions of self-recruitment? Ecol Appl 22:1257–1267
Pratchett MS, Berumen ML, Marnane MJ, Eagle JV, Pratchett DJ (2008) Habitat associations of juvenile versus adult butterflyfishes. Coral Reefs 27:541–551
Pusack TJ, Christie MR, Johnson DW, Stallings CD, Hixon MA (2014) Spatial and temporal patterns of larval dispersal in a coral-reef fish metapopulation: evidence of variable reproductive success. Mol Ecol 23:3396–3408
Russ GR, Alcala AC (2010) Decadal scale rebuilding of predator biomass in Philippine marine reserves. Oecologia 163:1103–1106
Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2011) Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc R Soc Lond B Biol Sci 278:2954–2961
Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2012) Patterns and persistence of larval retention and connectivity in a marine fish metapopulation. Mol Ecol 21:4695–4705
Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, Lindeman KC, Planes S, Polunin NVC, Russ GR, Sadovy YJ, Steneck RS (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80
Steneck RS, Paris CB, Arnold SN, Ablan-Lagman MC, Alcala AC, Butler MJ, McCook LJ, Russ GR, Sale PF (2009) Thinking and managing outside the box: coalescing connectivity networks to build region-wide resilience in coral reef ecosystems. Coral Reefs 28:367–378
Tanaka N (1992) Pair territory and diurnal migration of the vagabond butterflyfish Chaetodon vagabundus. Galaxea 11:66
Thresher RE (1984) Reproduction in reef fishes. T.F.H. Publications, Neptune
Wang B, Liu J, Kim HJ, Webster PJ, Yim SY (2012) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39:1123–1135
Weeks R, Russ GR, Alcala AC, White AT (2010) Effectiveness of marine protected areas in the Philippines for biodiversity conservation. Conserv Biol 24:531–540
Weeks R, Aliño PM, Atkinson S, Beldia P, Binson A, Campos WL, Djohani R, Green AL, Hamilton R, Horigue V, Jumin R, Kalimk K, Kasasiahl K, Keresekam J, Klein C, Laroya L, Magupin S, Masike B, Mohan C, Pinto RMDS, Vave-Karamui A, Villanoy C, Welly M, White AT (2014) Developing marine protected area networks in the Coral Triangle: good practices for expanding the Coral Triangle marine protected area system. Coast Manag 42:183–205
White AT, Aliño PM, Cros A, Fatan NA, Green AL, Teoh SJ, Laroya L, Peterson N, Tan S, Tighe S, Venegas-Li R (2014) Marine protected areas in the Coral Triangle: progress, issues, and options. Coast Manag 42:87–106
White JW, Botsford LW, Hastings A, Largier JL (2010) Population persistence in marine reserve networks: incorporating spatial heterogeneities in larval dispersal. Mar Ecol Prog Ser 398:49–67
Williamson DH, Harrison HB, Almany GR, Berumen ML, Bode M, Bonin MC, Choukroun S, Doherty PJ, Frisch AJ, Saenz-Agudelo P, Jones GP (2016) Large-scale, multidirectional larval connectivity among coral reef populations in the Great Barrier Reef Marine Park. Mol Ecol 25:6039–6054
Wyrtki K (1961) Physical oceanography of the Southeast Asian waters. Scripps Institution of Oceanography, University of California, La Jolla
Acknowledgements
Financial support was provided by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) ACCCoast Program to RAA, the ARC Centre of Excellence for Coral Reef Studies at JCU to GRR and KAUST baseline research funds to MLB. Collection of samples was permitted by the Department of Agriculture-Bureau of Fisheries and Aquatic Resources (DA-BFAR) in accordance with Philippine laws and regulations (RA 9147; FAO 233) and approved by the JCU animal ethics committee. Prior informed consent and support for this research was given by fisherfolk communities and municipal officials in Negros and the AIPLS Protected Area Management Board. ENRD-Negros Oriental, M. Teves, M. Barillo, D. Inocencio, R. Tuble, T. Yucor, R. Tubat, M. Pascobello, S. Leahy, A. Bucol, A. Regalado, O. Paderanga, M. Martin, J. Maypa and SU-IEMS provided valuable assistance. G. Almany, H. Harrison, G. Jones and S. Planes are thanked for their support. A. Bucol and D. C. Lou processed the otoliths. Staff at the KAUST Bioscience Core Laboratory assisted with DNA analysis. The authors are grateful to two anonymous reviewers whose comments greatly improved the paper. RAA dedicates this work to the memory of E. Q. Abesamis.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Ecology Editor Dr. Alastair Harborne
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Abesamis, R.A., Saenz-Agudelo, P., Berumen, M.L. et al. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities. Coral Reefs 36, 791–801 (2017). https://doi.org/10.1007/s00338-017-1570-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00338-017-1570-0
Keywords
- Community fisheries
- Coral Triangle
- Marine protected areas
- Network persistence
- Recruitment subsidy