Dissepiments, density bands and signatures of thermal stress in Porites skeletons

Abstract

The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called “stress bands,” preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density “stress band” accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral’s calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the underlying cause of high-density stress bands.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abe N (1937) Postlarval development of the coral Fungia actiniformis var. palawensis Doderlein. Palao Tropical Biological Station Studies 1:73–93

    Google Scholar 

  2. Barkley HC, Cohen AL (2016) Skeletal records of community-level bleaching in Porites corals from Palau. Coral Reefs 35:1407–1417

    Article  Google Scholar 

  3. Barkley HC, Cohen AL, Golbuu Y, Starczak VR, DeCarlo TM, Shamberger KE (2015) Changes in coral reef communities across a natural gradient in seawater pH. Sci Adv 1:e1500328

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barnes DJ (1970) Coral skeletons: an explanation of their growth and structure. Science 170:1305–1308

    CAS  Article  PubMed  Google Scholar 

  5. Barnes DJ, Lough JM (1989) The nature of skeletal density banding in scleractinian corals: fine banding and seasonal patterns. J Exp Mar Bio Ecol 126:119–134

    Article  Google Scholar 

  6. Barnes DJ, Lough JM (1992) Systematic variations in the depth of skeleton occupied by coral tissue in massive colonies of Porites from the Great Barrier Reef. J Exp Mar Bio Ecol 159:113–128

    Article  Google Scholar 

  7. Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Bio Ecol 167:91–108

    Article  Google Scholar 

  8. Bruno J, Siddon C, Witman J, Colin P, Toscano M (2001) El Niño-related coral bleaching in Palau, western Caroline Islands. Coral Reefs 20:127–136

    Article  Google Scholar 

  9. Buddemeier RW (1974) Environmental controls over annual and lunar monthly cycles in hermatypic coral calcification. Proc 2nd Int Coral Reef Symp 2:259–267

  10. Buddemeier RW, Kinzie RA (1975) The chronometric reliability of contemporary corals. In: Rosenberg G, Runcorn S (eds) Growth rhythms and the history of the earth’s rotation. Wiley, London, pp 135–147

    Google Scholar 

  11. Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Bio Ecol 14:179–199

    Article  Google Scholar 

  12. Cai W-J, Ma Y, Hopkinson BM, Grottoli AG, Warner ME, Ding Q, Hu X, Yuan X, Schoepf V, Xu H, Han C, Melman T, Hoadley KD, Pettay DT, Matsui Y, Baumann JH, Levas S, Ying Y, Wang Y (2016) Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat Commun 7:11144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Cantin NE, Lough JM (2014) Surviving coral bleaching events: Porites growth anomalies on the Great Barrier Reef. PLoS One 9:e88720

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    CAS  Article  PubMed  Google Scholar 

  15. Carilli JE, Norris RD, Black B, Walsh SM, McField M (2009a) Century-scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. Glob Chang Biol 16:1247–1257

    Article  Google Scholar 

  16. Carilli JE, Norris RD, Black BA, Walsh SM, McField M (2009b) Local stressors reduce coral resilience to bleaching. PLoS One 4:e6324

    Article  PubMed  PubMed Central  Google Scholar 

  17. Castillo KD, Ries JB, Weiss JM, Lima FP (2012) Decline of forereef corals in response to recent warming linked to history of thermal exposure. Nat Clim Chang 2:756–760

    Article  Google Scholar 

  18. Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Niño/Southern oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276

    CAS  Article  PubMed  Google Scholar 

  19. Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. Reviews in Mineralogy and Geochemistry 54:151–187

    CAS  Article  Google Scholar 

  20. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118–127

    Article  Google Scholar 

  21. Cohen AL, Layne GD, Hart SR, Lobel PS (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16:20–26

    Article  Google Scholar 

  22. Cohen AL, Owens KE, Layne GD, Shimizu N (2002) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science 296:331–333

    CAS  Article  PubMed  Google Scholar 

  23. DeCarlo TM, Cohen AL (2016) coralCT: software tool to analyze computed tomography (CT) scans of coral skeletal cores for calcification and bioerosion rates. Zenodo. doi:10.5281/zenodo.57855

    Google Scholar 

  24. DeCarlo TM, Gaetani GA, Holcomb M, Cohen AL (2015a) Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: implications for interpreting coral skeleton. Geochim Cosmochim Acta 162:151–165

    CAS  Article  Google Scholar 

  25. DeCarlo TM, Gaetani GA, Cohen AL, Foster GL, Alpert AE, Stewert J (2016) Coral Sr–U thermometry. Paleoceanography 31:626–638

    Article  Google Scholar 

  26. DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C, Shamberger KE, Brainard RE, Golbuu Y (2015b) Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43:7–10

    Article  Google Scholar 

  27. Dodge RE, Vaisnys JR (1975) Hermatypic coral growth banding as environmental recorder. Nature 258:706–708

    Article  Google Scholar 

  28. Dodge RE, Szmant AM, Garcia R, Swart PK, Forester A, Leder JJ (1993) Skeletal structural basis of density banding in the reef coral Montastrea annularis. In: Proc 7th Int Coral Reef Symp 1: 186–195

  29. Gladfelter EG (1983) Skeletal development in Acropora cervicornis: II. Diel patterns of calcium carbonate accretion. Coral Reefs 2:91–100

    Article  Google Scholar 

  30. Gorbunov MY, Falkowski PG (2002) Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol Oceanogr 47:309–315

    Article  Google Scholar 

  31. Goreau TF, Goreau NI (1959) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull 117:239–250

    CAS  Article  Google Scholar 

  32. Harrison PL, Babcock RC, Bull GD, Oliver JK, Wallace CC, Willis BL (1984) Mass spawning in tropical reef corals. Science 223:1186–1189

    CAS  Article  PubMed  Google Scholar 

  33. Helmle K, Dodge R (2011) Sclerochronology. In: Hopley D (ed) Encyclopedia of modern coral reefs. Springer, Netherlands, pp 958–966

    Google Scholar 

  34. Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Bio Ecol 37:105–125

    Article  Google Scholar 

  35. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    CAS  Article  PubMed  Google Scholar 

  36. Holcomb M, Cohen AL, McCorkle DC (2013) An evaluation of staining techniques for marking daily growth in scleractinian corals. J Exp Mar Bio Ecol 440:126–131

    Article  Google Scholar 

  37. Hudson JH (1981a) Response of Montastrea annularis to environmental change in the Florida Keys. Proc 4th Int Coral Reef Symp 2: 233–240

  38. Hudson JH (1981b) Growth rates in Montastrea annularis: a record of environmental change in Key Largo Coral Reef Marine Sanctuary, Florida. Bull Mar Sci 31:444–459

    Google Scholar 

  39. Hudson JH, Shinn EA, Halley RB, Lidz B (1976) Sclerochronology: a tool for interpreting past environments. Geology 4:361–364

    Article  Google Scholar 

  40. Jokiel PL, Ito RY, Liu PM (1985) Night irradiance and synchronization of lunar release of planula larvae in the reef coral Pocillopora damicornis. Mar Biol 88:167–174

    Article  Google Scholar 

  41. Kaniewska P, Alon S, Karako-Lampert S, Hoegh-Guldberg O, Levy O (2015) Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 4:e09991

    Article  PubMed  PubMed Central  Google Scholar 

  42. Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272

    CAS  Article  PubMed  Google Scholar 

  43. Lough JM, Barnes DJ (1990) Intra-annual timing of density band formation of Porites coral from the central Great Barrier Reef. J Exp Mar Bio Ecol 135:35–57

    Article  Google Scholar 

  44. Lough JM, Barnes DJ (1992) Comparisons of skeletal density variations in Porites from the central Great Barrier Reef. J Exp Mar Bio Ecol 155:1–25

    Article  Google Scholar 

  45. Mallela J, Hetzinger S, Halfar J (2015) Thermal stress markers in Colpophyllia natans provide an archive of site-specific bleaching events. Coral Reefs 35:181–186

    Article  Google Scholar 

  46. Mendes JM, Woodley JD (2002) Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar Ecol Prog Ser 235:93–102

    Article  Google Scholar 

  47. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  48. Rotmann S, Thomas S (2012) Coral tissue thickness as a bio-indicator of mine-related turbidity stress on coral reefs at Lihir Island, Papua New Guinea. Oceanography 25:52–63

    Article  Google Scholar 

  49. Saenger C, Cohen AL, Oppo DW, Halley RB, Carilli JE (2009) Surface-temperature trends and variability in the low-latitude North Atlantic since 1552. Nat Geosci 2:492–495

    CAS  Article  Google Scholar 

  50. Schoepf V, McCulloch MT, Warner ME, Levas SJ, Matsui Y, Aschaffenburg MD, Grottoli AG (2014) Short-term coral bleaching is not recorded by skeletal boron isotopes. PLoS One 9:e112011

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shamberger KE, Cohen AL, Golbuu Y, McCorkle DC, Lentz SJ, Barkley HC (2014) Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys Res Lett 41:499–504

    Article  Google Scholar 

  52. Shirai K, Sowa K, Watanabe T, Sano Y, Nakamura T, Clode P (2012) Visualization of sub-daily skeletal growth patterns in massive Porites corals grown in Sr-enriched seawater. J Struct Biol 180:47–56

    Article  PubMed  Google Scholar 

  53. Smith SV, Buddemeier RW, Redalje RC, Houck JE (1979) Strontium-calcium thermometry in coral skeletons. Science 204:404–407

    CAS  Article  PubMed  Google Scholar 

  54. Smithers SG, Woodroffe CD (2001) Coral microatolls and 20th century sea level in the eastern Indian Ocean. Earth Planet Sci Lett 191:173–184

    CAS  Article  Google Scholar 

  55. Soong K, Chen C, Chang J-C (1999) A very large poritid colony at Green Island, Taiwan. Coral Reefs 18:42

    Article  Google Scholar 

  56. Sorauf J (1970) Microstructure and formation of dissepiments in the skeleton of the recent Scleractinia (hexacorals). Biomineralization 2:1–22

    Google Scholar 

  57. Suzuki A, Gagnon MK, Fabricius K, Isdale PJ, Yukino I, Kawahata H (2003) Skeletal isotope microprofiles of growth perturbations in Porites corals during the 1997–1998 mass bleaching event. Coral Reefs 22:357–369

    Article  Google Scholar 

  58. Swart PK, Hubbard JAEB (1982) Uranium in scleractinian coral skeletons. Coral Reefs 1:13–19

    CAS  Article  Google Scholar 

  59. Sweeney AM, Boch CA, Johnsen S, Morse DE (2011) Twilight spectral dynamics and the coral reef invertebrate spawning response. J Exp Biol 214:770–777

    Article  PubMed  Google Scholar 

  60. Taylor RB, Barnes DJ, Lough JM (1993) Simple models of density band formation in massive corals. J Exp Mar Bio Ecol 167:109–125

    Article  Google Scholar 

  61. Thompson WG, Spiegelman MW, Goldstein SL, Speed RC (2003) An open-system model for U-series age determinations of fossil corals. Earth Planet Sci Lett 210:365–381

    CAS  Article  Google Scholar 

  62. van Woesik R, van Woesik K, van Woesik L, van Woesik S (2013) Effects of ocean acidification on the dissolution rates of reef-coral skeletons. PeerJ 1:e208

    Article  PubMed  PubMed Central  Google Scholar 

  63. Venn A, Tambutté E, Holcomb M, Allemand D, Tambutté S (2011) Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One 6:e20013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Veron JEN (1986) Corals of Australia and the Indo-Pacific. Angus & Robertson, Sydney, Australia

    Google Scholar 

  65. Weber JN, Woodhead PMJ (1972) Temperature dependence of oxygen-18 concentration in reef coral carbonates. J Geophys Res 77:463–473

    CAS  Article  Google Scholar 

  66. Wells JW (1963) Coral growth and geochronometry. Nature 197:948–950

    Article  Google Scholar 

  67. Winter A, Sammarco PW (2010) Lunar banding in the scleractinian coral Montastraea faveolata: fine-scale structure and influence of temperature. J Geophys Res 115:G04007

    Google Scholar 

Download references

Acknowledgements

We thank Yimnang Golbuu (Palau International Coral Reef Center) for assistance with permits and hosting us at PICRC, Hannah Barkley, G.P. Lohmann, Chip Young, and Kathryn Pietro for help with fieldwork, Burnham Petrographics for mounting and polishing sections, and Horst Marschall for assistance with microscope analyses. We thank two anonymous reviewers for their helpful comments. This work was supported by NSF Grants OCE 1220529 and OCE 1605365 awarded to A.L. Cohen, a WHOI Ocean Ventures Fund award to T.M. DeCarlo, a WHOI Coastal Ocean Institute award to T.M. DeCarlo, and an NSF Graduate Research Fellowship to T.M. DeCarlo.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas M. DeCarlo.

Additional information

Communicated by Biology Editor Dr. Mark R. Patterson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19545 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DeCarlo, T.M., Cohen, A.L. Dissepiments, density bands and signatures of thermal stress in Porites skeletons. Coral Reefs 36, 749–761 (2017). https://doi.org/10.1007/s00338-017-1566-9

Download citation

Keywords

  • Coral
  • Calcification
  • Density banding
  • Sclerochronology
  • Stress bands
  • Bleaching