Coral Reefs

, Volume 36, Issue 2, pp 463–475 | Cite as

Fish mucus metabolome reveals fish life-history traits

  • M. Reverter
  • P. Sasal
  • B. Banaigs
  • D. Lecchini
  • G. Lecellier
  • N. Tapissier-Bontemps
Report

Abstract

Fish mucus has important biological and ecological roles such as defense against fish pathogens and chemical mediation among several species. A non-targeted liquid chromatography–mass spectrometry metabolomic approach was developed to study gill mucus of eight butterflyfish species in Moorea (French Polynesia), and the influence of several fish traits (geographic site and reef habitat, species taxonomy, phylogeny, diet and parasitism levels) on the metabolic variability was investigated. A biphasic extraction yielding two fractions (polar and apolar) was used. Fish diet (obligate corallivorous, facultative corallivorous or omnivorous) arose as the main driver of the metabolic differences in the gill mucus in both fractions, accounting for 23% of the observed metabolic variability in the apolar fraction and 13% in the polar fraction. A partial least squares discriminant analysis allowed us to identify the metabolites (variable important in projection, VIP) driving the differences between fish with different diets (obligate corallivores, facultative corallivores and omnivorous). Using accurate mass data and fragmentation data, we identified some of these VIP as glycerophosphocholines, ceramides and fatty acids. Level of monogenean gill parasites was the second most important factor shaping the gill mucus metabolome, and it explained 10% of the metabolic variability in the polar fraction and 5% in the apolar fraction. A multiple regression tree revealed that the metabolic variability due to parasitism in the polar fraction was mainly due to differences between non-parasitized and parasitized fish. Phylogeny and butterflyfish species were factors contributing significantly to the metabolic variability of the apolar fraction (10 and 3%, respectively) but had a less pronounced effect in the polar fraction. Finally, geographic site and reef habitat of butterflyfish species did not influence the gill mucus metabolome of butterflyfishes.

Keywords

Butterflyfishes Fish mucus Coral reefs Metabolomics Metabolic variability 

Supplementary material

338_2017_1554_MOESM1_ESM.eps (58 kb)
Fig. S1Partial least squares discriminant analysis (PLS-DA) score plot of the two first components (PLS1 and PLS2) of fish mucus metabolites detected in obligate corallivorous, facultative corallivorous and omnivorous butterflyfishes (EPS 57 kb)
338_2017_1554_MOESM2_ESM.eps (269 kb)
Fig. S2Heatmap of the metabolites from the apolar fraction with variable important in projection (VIP) scores > 1.5 issued from a partial least squares discriminant analysis (PLS-DA) model between fish with different diets (obligate corallivores, facultative corallivores and omnivores). Columns represent fish mucus samples and rows metabolites. * indicate identified VIP (see Table 3 for details on chemical structure) (EPS 268 kb)
338_2017_1554_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 14 kb)

References

  1. Abro R, Moazzami AA, Lindberg JE, Lundh T (2014) Metabolic insights in Arctic charr (Salvelinus alpinus) fed with zygomycetes and fish meal diets as assessed in liver using nuclear magnetic resonance (NMR) spectroscopy. Int Aquat Res 6:1–11CrossRefGoogle Scholar
  2. Antwis RE, Haworth RL, Engelmoer DJP, Ogilvy V, Fidgett AL, Preziosi RF (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS One 9:e85563CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833CrossRefPubMedGoogle Scholar
  4. Block RC, Duff R, Lawrence P, Kakinami L, Brenna JT, Shearer GC, Meednu N, Mousa S, Friedman A, Harris WS, Larson M, Georas S (2009) The effects of EPA, DHA, and aspirin ingestion on plasma lysophospholipids and autotaxin. Prostanglandins Leukot Essent Fatty Acids 82:87–95CrossRefGoogle Scholar
  5. Boutin S, Bernatchez L, Audet C, Derôme N (2013) Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS One 8:e84772CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brinchmann MF (2016) Immune relevant molecules identified in the skin mucus of fish using -omics technologies. Mol Biosyst 12:2056–2063CrossRefPubMedGoogle Scholar
  7. Chong-Seng KM, Cole AJ, Pratchett MS, Willis BL (2011) Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease. Coral Reefs 30:473–481CrossRefGoogle Scholar
  8. Cordero H, Brinchmann MF, Cuesta A, Messeguer J, Esteban MA (2015) Skin mucus proteome of European sea bass (Dicentrarchus labrax). Proteomics 15:4007–4020CrossRefPubMedGoogle Scholar
  9. De’ath G (2002) Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83:1105–1117Google Scholar
  10. de Caralt S, Bry D, Bontemps N, Turon X, Uriz M-J, Banaigs B (2013) Sources of secondary metabolite variation in Dysidea avara (Porifera: Demospongiae): the importance of having good neighbors. Mar Drugs 11:489–503CrossRefPubMedPubMedCentralGoogle Scholar
  11. Duan J, Sugawara T, Sakai S, Aida K, Hirata T (2011) Oral glucosylceramide reduces 2,4-dinitrofluorobenzene induced inflammatory response in mice by reducing TNF-alpha levels and leukocyte infiltration. Lipids 46:505–512CrossRefPubMedGoogle Scholar
  12. Duan J, Sugawara T, Hirose M, Aida K, Sakai S, Fujii A, Hirata T (2012) Dietary sphingolipids improve skin barrier functions via the upregulation of ceramide synthases in the epidermis. Exp Dermatol 21:448–452CrossRefPubMedGoogle Scholar
  13. Eckes M, Siebeck U, Dove S, Grutter A (2008) Ultraviolet sunscreens in reef fish mucus. Mar Ecol Prog Ser 353:203–211CrossRefGoogle Scholar
  14. Ekman DR, Skelton DM, Davis JM, Villeneuve DL, Cavallin JE, Schroeder A, Jensen AM, Ankley GT, Collette TW (2015) Metabolite profiling of fish skin mucus: a novel approach for minimally invasive environmental exposure monitoring and surveillance. Environ Sci Technol 49:3091–3100CrossRefPubMedGoogle Scholar
  15. Exton JH (1994) Phosphatydilcholine breakdown and signal transduction. Biochim Biophys Acta 1212:26–42CrossRefPubMedGoogle Scholar
  16. Fessler JL, Westneat MW (2007) Molecular phylogenetics of the butterflyfishes (Chaetodontidae): taxonomy and biogeography of a global coral reef fish family. Mol Phylogenet Evol 45:50–68CrossRefPubMedGoogle Scholar
  17. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171CrossRefPubMedGoogle Scholar
  18. Frias-Lopez J, Bonheyo GT, Jin Q, Fouke BW (2003) Cyanobacteria associated with coral black band disease in Caribbean and Indo-Pacific Reefs. Appl Environ Microbiol 69:2409–2413CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ghehdarijani MS, Hajimoradloo A, Ghorbani R, Roohi Z (2016) The effects of garlic-supplemented diets on skin mucosal immune responses, stress resistance and growth performance of the Caspian roach (Rutilus rutilius) fry. Fish Shellfish Immunol 49:79–83CrossRefPubMedGoogle Scholar
  20. Hannun YA, Luberto C (2000) Ceramide in the eukaryotic stress response. Trends Cell Biol 10:73–80CrossRefPubMedGoogle Scholar
  21. Harmelin-Vivien ML (1989) Implications of feeding specialization on the recruitment processes and community structure of butterflyfishes. Environ Biol Fish 25:101–110CrossRefGoogle Scholar
  22. Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Ann Rev Mar Sci 1:193–212CrossRefPubMedPubMedCentralGoogle Scholar
  23. He Q, Sun R, Liu H, Geng Z, Chen D, Li Y, Han J, Lin W, Du S, Deng Z (2014) NMR-based metabolomic analysis of spatial variation in soft corals. Mar Drugs 12:1876–1890CrossRefPubMedPubMedCentralGoogle Scholar
  24. Heenan A, Williams ID (2013) Monitoring herbivorous fishes as indicators of coral reef resilience in American Samoa. PLoS One 8:e79604CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hla T, Lee M-J, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids—receptor revelations. Science 294:1875–1878CrossRefPubMedGoogle Scholar
  26. Huang S-C, Fritsche KL (1992) Alteration in mouse splenic phospholipid fatty acid composition and lymphoid cell populations by dietary fat. Lipids 27:25–32CrossRefPubMedGoogle Scholar
  27. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551CrossRefPubMedGoogle Scholar
  28. Ichi I, Nakahara K, Kiso K, Kojo S (2007) Effect of dietary cholesterol and high fat on ceramide concentration in rat tissues. Nutrition 23:570–574CrossRefPubMedGoogle Scholar
  29. Ivanišević J, Thomas OP, Lejeusne C, Chevaldonné P, Pérez T (2011) Metabolic fingerprinting as an indicator of biodiversity: towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics 7:289–304CrossRefGoogle Scholar
  30. Johnson PTJ, Preston DL, Hoverman JT, LaFonte BE (2013) Host and parasite diversity jointly control disease risk in complex communities. Proc Natl Acad Sci U S A 110:16916–16921CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kallert DM, Bauer W, Haas W, El-Matbouli M (2011) No shot in the dark: myxozoans chemically detect fresh fish. Int J Parasitol 41:271–276CrossRefPubMedGoogle Scholar
  32. Klueter A, Crandall JB, Archer FI, Teece MA, Coffroth MA (2015) Taxonomic and environmental variation of metabolite profiles in marine dinoflagellates of the genus Symbiodinium. Metabolites 5:74–99CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kooke R, Keurentjes JJB (2011) Multi-dimensional regulation of metabolic networks shaping plant development and performance. J Exp Bot 63:3353–3365CrossRefPubMedGoogle Scholar
  34. Kusano M, Baxter I, Fukishima A, Oikawa A, Okazaki Y, Nakabayashi R, Bouvrette DJ, Achard F, Jakubowski AR, Ballam JM, Phillips JR, Culler AH, Saito K, Harrigan GH (2015) Assessing metabolomic and chemical diversity of soybean lineage representing 35 years of breeding. Metabolomics 11:261–270CrossRefGoogle Scholar
  35. Lages BG, Fleury BG, Hovell AMC, Rezende CM, Pinto AC, Creed JC (2012) Proximity to competitors changes secondary metabolites of non-indigenous cup corals, Tubastraea spp., in the southwest Atlantic. Mar Biol 159:1551–1559CrossRefGoogle Scholar
  36. Lamy T, Legendre P, Chancerelle Y, Siu G, Claudet J (2015) Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: insights from beta-diversity decomposition. PLoS One 10:e0138696CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lewis RW (1970) Fish cutaneous mucus: a new source of skin surface lipid. Lipids 5:947–949CrossRefGoogle Scholar
  38. Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. doi:10.3389/fmicb.2014.00207 PubMedPubMedCentralGoogle Scholar
  39. Marcogliese DJ (2005) Parasites of the superorganism: are they indicators of ecosystem health? Int J Parasitol 35:705–716CrossRefPubMedGoogle Scholar
  40. Matlock DB, Ginsburg DW, Paul VJ (1999) Spatial variability in secondary metabolite production by the tropical red alga Portieria hornemannii. Hydrobiologia 398–399:263–273CrossRefGoogle Scholar
  41. McLean S, Duncan AJ (2006) Pharmacological perspectives on the detoxification of plant secondary metabolites: implications for ingestive behavior of herbivores. J Chem Ecol 32:1213–1228CrossRefPubMedGoogle Scholar
  42. Moore BD, Andrew RL, Külheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750CrossRefPubMedGoogle Scholar
  43. Morash SC, Cook HW, Spence MW (1988) Phosphatidylcholine metabolism in cultured cells: catabolism via glycerophosphocholine. Biochim Biophys Acta 961:194–202CrossRefPubMedGoogle Scholar
  44. Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285CrossRefGoogle Scholar
  45. Noguchi T, Arakawa O (2008) Tetrodotoxin—distribution and accumulation in aquatic organisms, and cases of human intoxication. Mar Drugs 6:220–242CrossRefPubMedPubMedCentralGoogle Scholar
  46. Olff H, Alonso D, Berg MP, Eriksson BK, Loreau M, Piersma T, Rooney N (2009) Parallel ecological networks in ecosystems. Philos Trans R Soc Lond B Biol Sci 364:1755–1779CrossRefPubMedPubMedCentralGoogle Scholar
  47. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) vegan: community ecology package. R package version 2.4.1Google Scholar
  48. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422CrossRefPubMedGoogle Scholar
  49. Parsons HM, Ekman DR, Collette TW, Viant MR (2009) Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst 134:478–485CrossRefPubMedGoogle Scholar
  50. Pennings SC, Paul VJ (1993) Sequestration of dietary secondary metabolites by three species of sea hares: location, specificity and dynamics. Mar Biol 117:535–546CrossRefGoogle Scholar
  51. Pratchett MS (2005) Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar Biol 148:373–382CrossRefGoogle Scholar
  52. Purcell JE, Anderson PAV (1995) Electrical responses to water-soluble components of fish mucus recorded from the cnidocytes of a fish predator, Physalia physalis. Mar Freshw Behav Physiol 26:149–162CrossRefGoogle Scholar
  53. Quinn RA, Vermeij MJA, Hartmann AC, d’Auriac IG, Benler S, Haas A, Quistad SD, Lim YW, Little M, Sandin S, Smith JE, Dorrestein PC, Rohwer F (2016) Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc R Soc Lond B Biol Sci. doi:10.1098/rspb.2016.0469 Google Scholar
  54. Rajan B, Fernandes JMO, Caipang CMA, Kiron V, Rombout JHWM, Brinchmann M (2011) Proteome reference map of the skin mucus of Atlantic cod (Gadus morhua) revealing immune competent molecules. Fish Shellfish Immunol 31:224–231CrossRefPubMedGoogle Scholar
  55. Reverter M, Cutmore S, Bray R, Cribbs T, Sasal P (2016) Gill monogeneans (Platyhelminthes, Monogenea, Dactylogyridae) of butterflyfishes from the tropical Indo-West Pacific Islands. Parasitology 143:1580–1591CrossRefPubMedGoogle Scholar
  56. Rohde S, Gochfeld DJ, Ankisetty S, Avula B, Schupp PJ, Slattery M (2012) Spatial variability in secondary metabolites of the Indo-Pacific sponge Stylissa massa. J Chem Ecol 38:463–475CrossRefPubMedGoogle Scholar
  57. Roosta Z, Hajimoradloo A, Ghorbani R, Hoseinifar SH (2014) The effects of dietary vitamin C on mucosal immune responses and growth performance in Caspian roach (Rutilus rutilus caspicus) fry. Fish Physiol Biochem 40:1601–1607CrossRefPubMedGoogle Scholar
  58. Sanchez LM, Wong WR, Riener RM, Schulze CJ, Linington RG (2012) Examining the fish microbiome: vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS One 7:e35398CrossRefPubMedPubMedCentralGoogle Scholar
  59. Shephard KL (1993) Mucus on the epidermis of fish and its influence on drug delivery. Adv Drug Del Rev 11:403–417CrossRefGoogle Scholar
  60. Silva TS, da Costa AMR, Conceição LEC, Dias JP, Rodrigues PML, Richard N (2014) Metabolic fingerprinting of gilthead seabream (Sparus aurata) liver to track interactions between dietary factors and seasonal temperature variations. PeerJ. doi:10.7717/peerj.527 Google Scholar
  61. Sogin EM, Anderson P, Williams P, Chen C-S, Gates RD (2014) Application of 1H-NMR metabolomic profiling for reef-building corals. PLoS One 9:e111274CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sogin EM, Putnam HM, Anderson PE, Gates RD (2016) Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics 12:1–12CrossRefGoogle Scholar
  63. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836CrossRefPubMedGoogle Scholar
  64. Thoms C, Ebel R, Hentsche U, Proksch P (2003) Sequestration of dietary alkaloids by the spongivorous marine mollusc Tylodina perversa. Zeitschrift für Naturforschung C. doi:10.1515/znc-2003-5-623 Google Scholar
  65. Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–205CrossRefPubMedGoogle Scholar
  66. Vignon M, Sasal P (2010) Multiscale determinants of parasite abundance: a quantitative hierarchical approach for coral reef fishes. Int J Parasitol 40:443–451CrossRefPubMedGoogle Scholar
  67. Wen CKC, Bonin MC, Harrison HB, Williamson DH, Jones GP (2016) Dietary shift in juvenile coral trout (Plectropomus maculatus) following coral reef degradation from a flood plume disturbance. Coral Reefs 35:451–455CrossRefGoogle Scholar
  68. Wertz PW, Cho ES, Downing DT (1983) Effect of essential fatty acid deficiency on the epidermal sphingolipids of the rat. Biochim Biophys Acta 753:350–355CrossRefPubMedGoogle Scholar
  69. Wolfender JL, Glauser G, Boccard J, Rudaz S (2009) MS-based plant metabolomic approaches for biomarker discovery. Nat Prod Comm 4:1417–1430Google Scholar
  70. Wu H, Southam AD, Hines A, Viant MR (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372:204–212CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • M. Reverter
    • 1
    • 2
  • P. Sasal
    • 1
    • 2
  • B. Banaigs
    • 1
    • 2
  • D. Lecchini
    • 1
    • 2
  • G. Lecellier
    • 2
    • 3
    • 4
  • N. Tapissier-Bontemps
    • 1
    • 2
  1. 1.PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBEUniversité de PerpignanPerpignan CedexFrance
  2. 2.Laboratoire d’Excellence “CORAIL”MooréaFrench Polynesia
  3. 3.University Paris Saclay/Versailles-Saint Quentin en YvelinesVersailles CedexFrance
  4. 4.ENTROPIE, UMR250/9220-CNRS/IRD/URNouméa CedexNew Caledonia

Personalised recommendations