Skip to main content

Advertisement

Log in

Combined effects of sea water acidification and copper exposure on the symbiont-bearing foraminifer Amphistegina gibbosa

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral reefs are threatened by global and local stressors such as ocean acidification and trace metal contamination. Reliable early warning monitoring tools are needed to assess and monitor coral reef health. Symbiont-bearing foraminifers (Amphistegina gibbosa) were kept under ambient conditions (no sea water acidification and no copper addition) or exposed to combinations of different levels of sea water pH (8.1, 7.8, 7.5 and 7.2) and environmentally relevant concentrations of dissolved copper (measured: 1.0, 1.6, 2.3 and 3.2 µg L−1) in a mesocosm system. After 10- and 25-d exposure, foraminifers were analyzed for holobiont Ca2+-ATPase activity, bleaching, growth and mortality. Enzyme activity was inhibited in foraminifers exposed to pH 7.2 and 3.2 µg L−1 Cu for 25 d. Bleaching frequency was also higher at pH 7.2 combined with copper addition. There was no significant effect of sea water acidification and copper addition on mortality. However, test size was smaller in foraminifers exposed to copper, with a positive interactive effect of sea water acidification. These findings can be explained by the higher availability of free copper ions at lower water pH. This condition would increase Cu competition with Ca2+ for the binding sites on the organism, thus inhibiting Ca2+-ATPase activity and affecting the organism’s overall fitness. Findings reported here suggest that key processes in A. gibbosa, such as calcification and photosynthesis, are affected by the combined effect of global (sea water acidification) and local (copper contamination) stressors. Considering the experimental conditions employed (mesocosm system, possible ocean acidification scenarios, low copper concentrations, biomarkers of ecological relevance and chronic exposure), our findings support the use of foraminifera and biomarkers analyzed in the present study as reliable tools to detect and monitor the ecological impacts of multiple stressors in coral reef environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    Article  CAS  Google Scholar 

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci 5:321–348

    Article  PubMed  Google Scholar 

  • Andersson A, Mackenzie F, Bates N (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273

    Article  CAS  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105:17442–17446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ban SS, Graham NAJ, Connolly SR (2014) Evidence for multiple stressor interactions and effects on coral reefs. Glob Chang Biol 20:681–697

    Article  PubMed  Google Scholar 

  • Barbosa CF, Prazeres MDF, Ferreira BP, Seoane JCS (2009) Foraminiferal assemblage and reef check census in coral reef health monitoring of East Brazilian margin. Mar Micropaleontol 73:62–69

    Article  Google Scholar 

  • Bianchini A, Wood CM (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22:1361–1367

    Article  CAS  PubMed  Google Scholar 

  • Bielmyer GK, Grosell M, Bhagooli R, Baker AC, Langdon C, Gillette P, Capo TR (2010) Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.). Aquat Toxicol 97:125–133

    Article  CAS  PubMed  Google Scholar 

  • Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615

    Article  CAS  Google Scholar 

  • Burke L, Reytar K, Spaulding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington

    Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04

    Article  Google Scholar 

  • CONAMA (2005) Conselho Nacional do Meio Ambiente. Resolução N° 357, de 17 de março de 2005. Brasília, Brazil

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutoon P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11:1304–1315

    Article  PubMed  Google Scholar 

  • Depledge MH, Aagaard A, Gyorkost P (1995) Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers. Mar Pollut Bull 31:19–27

    Article  CAS  Google Scholar 

  • de Nooijer LJ, Spero HJ, Erez J, Bijma J, Reichart GJ (2014) Biomineralization in perforate foraminifera. Earth Sci Rev 135:48–58

    Article  Google Scholar 

  • Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543

    Article  CAS  PubMed  Google Scholar 

  • Downs CA, Woodley CM, Richmond RH, Lanning LL, Owen R (2005) Shifting the paradigm of coral-reef “health” assessment. Mar Pollut Bull 51:486–494

    Article  CAS  PubMed  Google Scholar 

  • Duarte G, Calderon EN, Pereira CM, Marangoni LFB, Santos HF, Peixoto RS, Bianchini A, Castro CB (2015) A novel marine mesocosm facility to study global warming, water quality, and ocean acidification. Ecol Evol 5:4555–4566

    Article  PubMed  PubMed Central  Google Scholar 

  • Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Reviews in Mineralogy and Geoche 54:115–149

    Article  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Fujita K, Hikami M, Suzuki A, Kuroyanagi A, Sakai K, Kawahata H, Nojiri Y (2011) Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences 8:2089–2098

    Article  Google Scholar 

  • Fujita M, Ide Y, Sato D, Kench PS, Kuwahara Y, Hiromune Y, Kayanne H (2014) Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu. Chemosphere 95:628–634

    Article  CAS  PubMed  Google Scholar 

  • Giacomin M, Gillis PL, Bianchini A, Wood CM (2013) Interactive effects of copper and dissolved organic matter on sodium uptake, copper bioaccumulation, and oxidative stress in juvenile freshwater mussels (Lampsilis siliquoidea). Aquat Toxicol 144–145:105–115

    Article  PubMed  Google Scholar 

  • Giesy JP, Hoke RA (1989) Freshwater sediment toxicity bioassessment: rationale for species selection and test design. J Great Lakes Res 15:539–569

    Article  CAS  Google Scholar 

  • Glas MS, Langer G, Keul N (2012) Calcification acidifies the microenvironment of a benthic foraminifer (Ammonia sp.). J Exp Mar Biol Ecol 425:53–58

    Article  Google Scholar 

  • Grosell M, Blanchard J, Brix KV, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol 84:162–172

    Article  CAS  PubMed  Google Scholar 

  • Hallock P (2012) The FORAM index revisited: usefulness, challenges and limitations. Proc 12th Int Coral Reef Symp 1:15F_2. http://www.icrs2012.com/proceedings/manuscripts/ICRS2012_15F_2.pdf

  • Hallock P, Forward LB, Hansen HJ (1986) Influence of environment on the test shape of Amphistegina. J Foraminiferal Res 16:224–231

    Article  Google Scholar 

  • Hallock P, Lidz BH, Cockey-Burkhard EM, Donnelly KB (2003) Foraminifera as bioindicators in coral reef assessment and monitoring: the FORAM index. Environ Monitor Assess 81:221–238

    Article  Google Scholar 

  • Hallock P, Williams DE, Fisher EM, Toler SK (2006) Bleaching in foraminifera with algal symbionts: implications for reef monitoring and risk assessment. Anuário do Instituto de Geociências 26:108–128

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) The fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • IPCC (2014) The fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Jones RJ (2004) Testing the ‘photoinhibition’ model of coral bleaching using chemical inhibitors. Mar Ecol Prog Ser 284:133–145

    Article  CAS  Google Scholar 

  • Jones R (2010) Environmental contamination associated with a marine landfill (‘seafill’) beside a coral reef. Mar Pollut Bull 60:1993–2006

    Article  CAS  PubMed  Google Scholar 

  • Jorge MB, Loro VL, Bianchini A, Wood CM, Gillis PL (2013) Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper. Aquat Toxicol 126:137–147

    Article  CAS  PubMed  Google Scholar 

  • Khanna N, Godbold JA, Austin WEN, Paterson DM (2013) The impact of ocean acidification on the functional morphology of foraminifera. PLoS One 8:e83118

    Article  PubMed  PubMed Central  Google Scholar 

  • Knorr PO, Robbins LL, Harries PJ, Hallock P, Wynn J (2015) Response of the miliolid Archaias angulatus to simulated ocean acidification. J Foraminiferal Res 45:109–127

    Article  Google Scholar 

  • Kuroyanagi A, Kawahata H, Suzuki A, Fujita K, Irie T (2009) Marine micropaleontology impacts of ocean acidification on large benthic foraminifers: results from laboratory experiments. Mar Micropaleontol 73:190–195

    Article  Google Scholar 

  • Langer MR, Hottinger L (2000) Biogeography of selected “larger” Foraminifera. Micropaleontology 46:105–126

    Google Scholar 

  • Le Cadre V, Debenay JP (2006) Morphological and cytological responses of Ammonia (Foraminifera) to copper contamination: implication for the use of foraminifera as bioindicators of pollution. Environ Pollut 143:304–317

    Article  PubMed  Google Scholar 

  • Marangoni LFB (2014) Biomarcadores para avaliação dos efeitos do cobre no coral Mussismilia harttii (Cnidaria, Scleractinia, Mussidae). M.Sc. thesis, Universidade Federal do Rio Grande, Rio Grande, Brazil, p 86

  • Martinez-Colón M, Hallock P, Green-Ruíz C (2009) Strategies for using shallow-water benthic foraminifers as bioindicators of potentially toxic elements: a review. J Foraminiferal Res 39:278–299

    Article  Google Scholar 

  • McIntyre-Wressnig A, Bernhard JM, Mccorkle DC, Hallock P (2011) Non-lethal effects of ocean acidification on two symbiont-bearing benthic foraminiferal species. Biogeosci Discuss 8:9165–9200

    Article  Google Scholar 

  • McIntyre-Wressnig A, Bernhard JM, Mccorkle DC, Hallock P (2013) Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphistegina gibbosa. Mar Ecol Prog Ser 472:45–60

    Article  CAS  Google Scholar 

  • Moulin L, Grosjean P, Leblud J, Batigny A, Dubois P (2014) Impact of elevated pCO2 on acid–base regulation of the sea urchin Echinometra mathaei and its relation to resistance to ocean acidification: a study in mesocosms. J Exp Mar Bio Ecol 457:97–104

    Article  CAS  Google Scholar 

  • Movilla J, Calvo E, Pelejero C, Coma R, Serrano E, Fernández-Vallejo P, Ribes M (2012) Calcification reduction and recovery in native and non-native Mediterranean corals in response to ocean acidification. J Exp Mar Bio Ecol 438:144–153

    Article  CAS  Google Scholar 

  • Nadella SR, Fitzpatrick JL, Franklin N, Bucking C, Smith S, Wood CM (2009) Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel (Mytilus trossolus) and the protective effect of dissolved organic carbon. Comp Biochem Physiol C Toxicol Pharmacol 149:340–348

    Article  PubMed  Google Scholar 

  • Negri AP, Flores F, Rothig T, Uthicke S (2011) Herbicides increase the vulnerability of corals to rising sea surface temperature. Limnol Oceanogr 56:471–485

    Article  CAS  Google Scholar 

  • Nikinmaa M (2013) Climate change and ocean acidification interactions with aquatic toxicology. Aquat Toxicol 126:365–372

    Article  CAS  PubMed  Google Scholar 

  • Odum EP (1984) The mesocosm. Bioscience 34:558–562

    Article  Google Scholar 

  • Prazeres MF, Martins SE, Bianchini A (2011) Biomarkers response to zinc exposure in the symbiont-bearing foraminifer Amphistegina lessonii (Amphisteginidae, Foraminifera). J Exp Mar Bio Ecol 407:116–121

    Article  CAS  Google Scholar 

  • Prazeres MF, Martins SE, Bianchini A (2012a) Assessment of water quality in coastal waters of Fernando de Noronha, Brazil: biomarker analyses in Amphistegina lessonii. J Foraminiferal Res 42:56–65

    Article  Google Scholar 

  • Prazeres MF, Martins SE, Bianchini A (2012b) Impact of metal exposure in the symbiont-bearing foraminifer Amphistegina lessonii. Proc 12th Int Coral Reef Symp 1:15F_1. http://www.icrs2012.com/proceedings/manuscripts/ICRS2012_15F_1.pdf

  • Prazeres M, Uthicke S, Pandolfi JM (2015) Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proc R Soc Lond B Biol Sci 282:20142782

    Article  Google Scholar 

  • Prazeres MF, Uthicke S, Pandolfi JM (2016a) Influence of local habitat on the physiological responses of large benthic foraminifera to temperature and nutrient stress. Sci Rep 6:21936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prazeres MF, Uthicke S, Pandolfi JM (2016b) Changing light levels induce photo-oxidative stress and alterations in shell density of Amphistegina lobifera (Foraminifera). Mar Ecol Prog Ser 549:69–78

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Reymond CE, Lloyd A, Kline DI, Dove SG, Pandolfi JM (2013) Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob Chang Biol 19:291–302

    Article  PubMed  Google Scholar 

  • Richards R, Chaloupka M, Sanò M, Tomlinson R (2011) Modelling the effects of “coastal” acidification on copper speciation. Ecol Model 222:3559–3567

    Article  CAS  Google Scholar 

  • Robbins LL, Knorr PO, Wynn JG, Hallock P, Harries PJ (2016) Interpreting the role of pH on stable isotopes in large benthic foraminifera. ICES J Mar Sci 2016:fsw056

  • Ross BJ, Hallock P (2014) Chemical toxicity on coral reefs: bioassay protocols utilizing benthic foraminifers. J Exp Mar Biol Ecol 457:226–235

    Article  CAS  Google Scholar 

  • Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, van Elsas JD, Peixoto RS (2014) Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J 8:2272–2279

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarmento VC, Souza TP, Esteves AM, Santos PJP (2015) Effects of seawater acidification on a coral reef meiofauna community. Coral Reefs 34:955–966

    Article  Google Scholar 

  • Schmidt C, Heinz P, Kucera M, Uthicke S (2011) Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol Oceanogr 56:1587–1602

    Article  Google Scholar 

  • Schmidt C, Kucera M, Uthicke S (2014) Combined effects of warming and ocean acidification on coral reef Foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs 33:805–818

    Article  Google Scholar 

  • Shaw JL, Kennedy JH (1996) The use of aquatic field mesocosm studies in risk assessment. Environ Toxicol Chem 15:605–607

    CAS  Google Scholar 

  • Siddiqui S, Bielmyer-Fraser GK (2015) Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Aquat Toxicol 167:228–239

    Article  CAS  PubMed  Google Scholar 

  • Stewart RI, Dossena M, Bohan DA, Jeppesen E, Kordas RL, Ledger ME, Meerhoff M, Moss B, Mulder C, Shurin JB, Suttle B, Thompson R, Trimmer M, Woodward G (2013) Mesocosm experiments as a tool for ecological climate change. Adv Ecol Res 48:71–117

    Article  Google Scholar 

  • Tellis MS, Lauer MM, Nadella S, Bianchini A, Wood CM (2014) Sublethal mechanisms of Pb and Zn toxicity to the purple sea urchin (Strongylocentrotus purpuratus) during early development. Aquat Toxicol 146:220–229

    Article  CAS  PubMed  Google Scholar 

  • ter Kuile B, Erez J, Padan E (1989) Competition for inorganic carbon between photosynthesis and calcification in the symbiont-bearing foraminifer Amphistegina lobifera. Mar Biol 103:253–259

    Article  Google Scholar 

  • Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sokolova IM (2011) Proteomic response to elevated pCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J Exp Biol 214:1836–1844

    Article  CAS  PubMed  Google Scholar 

  • Turner A (2010) Marine pollution from antifouling paint particles. Mar Pollut Bull 60:159–171

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2003) Draft update of ambient quality criteria for copper. EPA 822-R-03-026. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Uthicke S, Fabricius KE (2012) Productivity gains do not compensate for reduced calcification under near-future ocean acidification in the photosynthetic benthic foraminifer species Marginopora vertebralis. Glob Chang Biol 18:2781–2791

    Article  PubMed  Google Scholar 

  • Uthicke S, Vogel N, Doyle J, Schmidt C, Humphrey C (2012) Interactive effects of climate change and eutrophication on the dinoflagellate-bearing benthic foraminifer Marginopora vertebralis. Coral Reefs 31:401–414

    Article  Google Scholar 

  • van Dam JW, Negri AP, Uthicke S, Mueller JF (2011) Chemical pollution on coral reefs: exposure and ecological effects. In: Sanchez-Bayo F, van den Brink PJ, Mann RM (eds) Ecological impacts of toxic chemicals. Bentham Science Publishers, Amsterdam

    Google Scholar 

  • van Dam JW, Negri AP, Mueller JF, Altenburger R, Uthicke S (2012) Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera. PLoS One 7:e33900

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dam JW, Uthicke S, Beltran VH, Mueller JF, Negri AP (2015) Combined thermal and herbicide stress in functionally diverse coral symbionts. Environ Pollut 204:271–279

    Article  PubMed  Google Scholar 

  • van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Chang Biol 20:103–112

    Article  PubMed  Google Scholar 

  • Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, Sheppard CRC, Spalding M, Stafford-Smith MG, Rogers AD (2009) The coral reef crisis: the critical importance of <350 ppm CO2. Mar Pollut Bull 58:1428–1436

    Article  CAS  PubMed  Google Scholar 

  • Viarengo A, Mancinelli G, Pertica M, Fabbri R, Orunesu M (1993) Effects of heavy metals on the Ca2+-ATPase activity present in gill cell plasma-membrane of mussels (Mytilus galloprovincialis Lam.). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 106:655–660

    Article  CAS  Google Scholar 

  • Viarengo A, Pertica M, Mancinelli G, Burlando B, Canesi L, Orunesu M (1996) In vivo effects of copper on the calcium homeostasis mechanisms of mussel gill cell plasma membranes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113:421–425

    Article  Google Scholar 

  • Vijayavel K, Gopalakrishnan S, Balasubramanian MP (2007) Sublethal effect of silver and chromium in the green mussel Perna viridis with reference to alterations in oxygen uptake, filtration rate and membrane-bound ATPase system as biomarkers. Chemosphere 69:979–986

    Article  CAS  PubMed  Google Scholar 

  • Vijayavel K, Downs CA, Ostrander GK, Richmond RH (2012) Oxidative DNA damage induced by iron chloride in the larvae of the lace coral Pocillopora damicornis. Comp Biochem Physiol C Toxicol Pharmacol 155:275–280

    Article  CAS  PubMed  Google Scholar 

  • Vogel N, Uthicke S (2012) Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. J Exp Mar Biol Ecol 424–425:15–24

    Article  Google Scholar 

  • Wernberg T, Smale DA, Thomsen MS (2012) A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob Chang Biol 18:1491–1498

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Pamela Hallock, Dr. Marta Marques de Souza and Dr. Clarisse Odebrecht for valuable suggestions and improvement in the English manuscript. Cristiano Pereira, Dr. Emiliano Calderon and Coral Vivo’s staff are acknowledged for their support during experiments. Financial support is acknowledged from the International Development Research Centre (IDRC, Ottawa, Canada), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Programa Ciências do Mar, Brasília, DF, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Instituto Nacional de Ciência e Tecnologia de Toxicologia Aquática, Brasília, DF, Brazil). We acknowledge support for field from the Coral Vivo Project sponsored by Petróleo Brasileiro S.A. (Petrobras), through the Petrobras Environmental Program, and Arraial d’Ajuda Eco Parque. A. Bianchini is a researcher fellow from the Brazilian CNPq (Proc. # 304430/2009-9) and supported by the International Canada Research Chair Program from IDRC. J.A. Marques was a graduate fellow from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adalto Bianchini.

Additional information

Communicated by Biology Editor Dr. Line K. Bay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, J.A., de Barros Marangoni, L.F. & Bianchini, A. Combined effects of sea water acidification and copper exposure on the symbiont-bearing foraminifer Amphistegina gibbosa . Coral Reefs 36, 489–501 (2017). https://doi.org/10.1007/s00338-017-1547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1547-z

Keywords

Navigation