Skip to main content

Forecasting lionfish sources and sinks in the Atlantic: are Gulf of Mexico reef fisheries at risk?

Abstract

Invasive lionfish (Pterois volitans/miles complex) now permeate the entire tropical western Atlantic, Caribbean Sea, and Gulf of Mexico, but lionfish abundance has been measured only in select locations in the field. Despite its rapid range expansion, a comprehensive meta-population analysis of lionfish ‘sources’ and ‘sinks’ and consequentially the invader’s potential abundance and impacts on economically important, sympatric reef fishes have not been assessed. These data are urgently needed to spatially direct control efforts and to plan for and perhaps mitigate lionfish-caused damage. Here, we use a biophysical computer model to: (1) forecast larval lionfish sources and sinks that are also delineated as low to high lionfish ‘density zones’ throughout their invaded range, and (2) assess the potential vulnerability of five grouper and snapper species—Epinephelus morio, Mycteroperca microlepis, Epinephelus flavolimbatus, Lutjanus campechanus, and Rhomboplites aurorubens—to lionfish within these density zones in the Gulf of Mexico. Our results suggest that the west Florida shelf and nearshore waters of Texas, USA, and Guyana, South America, function both as lionfish sources and sinks and should be a high priority for targeted lionfish control. Furthermore, of the five groupers and snappers studied, the high fishery value E. morio (red grouper) is the Gulf of Mexico species most at risk from lionfish. Lacking a comprehensive lionfish control policy, these risk exposure data inform managers where removals should be focused and demonstrate the risk to five sympatric native groupers and snappers in the Gulf of Mexico that may be susceptible to dense lionfish aggregations, should control efforts fail.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. ACCSP (Atlantic Coastal Cooperative Statistics Program) (2015) ACCSP data warehouse. http://www.accsp.org

  2. Agudo EA, Salas EK (2014) Lionfish abundance, size structure and spatial distribution along the Venezuelan coast (Pterois volitans, Pteroinae: Scorpaenidae). International Journal of Tropical Biology and Conservation 62:151–158

    Google Scholar 

  3. Ahrenholz DW, Morris JA Jr (2010) Larval duration of the lionfish, Pterois volitans along the Bahamian Archipelago. Environ Biol Fishes 88:305–309

    Article  Google Scholar 

  4. Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238

    Article  Google Scholar 

  5. Albins MA, Hixon MA (2013) Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ Biol Fishes 96:1151–1157

    Article  Google Scholar 

  6. Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC 24, National Geophysical Data Center, Marine Geology and Geophysics Division, Boulder, Colorado

  7. Barbour AB, Montgomery ML, Adamson AA, Díaz-Ferguson E, Silliman BR (2008) Mangrove use by the invasive lionfish Pterois volitans. Mar Ecol Prog Ser 401:291–294

    Article  Google Scholar 

  8. Briggs JC (1974) Marine zoogeography. McGraw Hill, New York

    Google Scholar 

  9. Chagaris D, Binion S, Bodanoff A, Dahl K, Granneman J, Harris H, Mohan J, Rudd M, Swenarton M, Ahrens R, Allen M, Morris J, Patterson W (2015) Modeling lionfish management strategies on the West Florida Shelf: workshop summary and results. University of Florida, Gainesville, p 31

    Google Scholar 

  10. Coleman FC, Koenig CC (2010) The effects of fishing, climate change, and other anthropogenic disturbances on red grouper and other reef fishes in the Gulf of Mexico. Integr Comp Biol 50:201–212

    Article  PubMed  Google Scholar 

  11. Coleman FC, Koenig CC, Scanlon KM, Heppell S, Heppell S, Miller MW (2010) Benthic habitat modification through excavation by red grouper, Epinephelus morio, in the northeastern Gulf of Mexico. The Open Fish Science Journal 3:1–15

    Article  Google Scholar 

  12. Côté IM, Green SJ, Morris JA Jr, Akins JL, Steinke D (2013) Diet richness of invasive Indo-Pacific lionfish revealed by DNA barcoding. Mar Ecol Prog Ser 472:249–256

    Article  Google Scholar 

  13. Darling ES, Green SJ, O’Leary JK, Côté IM (2011) Indo-Pacific lionfish are larger and more abundant on invaded reefs: a comparison of Kenyan and Bahamian lionfish populations. Biol Invasions 13:2045–2051

    Article  Google Scholar 

  14. Ferreira CE, Luiz OJ, Floeter SR, Lucena MB, Barbosa MC, Rocha CR, Rocha LA (2015) First record of invasive lionfish (Pterois volitans) for the Brazilian coast. PLoS One 10:e0123002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frazer TK, Jacoby CA, Edwards MA, Barry SC, Manfrino CM (2012) Coping with the lionfish invasion: can targeted removals yield beneficial effects? Reviews in Fisheries Science 20:185–191

    Article  Google Scholar 

  16. Freshwater DW, Hines A, Parham S, Wilbur A, Sabaoun M, Woodhead J, Akins L, Purdy B, Whitfield PE, Paris CB (2009) Mitochondrial control region sequence analyses indicate dispersal from the US East Coast as the source of the invasive Indo-Pacific lionfish Pterois volitans in the Bahamas. Mar Biol 156:1213–1221

    Article  Google Scholar 

  17. Green SJ, Côté IM (2009) Record densities of Indo-Pacific lionfish on Bahamian coral reefs. Coral Reefs 28:107

    Article  Google Scholar 

  18. Green SJ, Akins JL, Maljković A, Côté IM (2012) Invasive lionfish drive Atlantic coral reef fish declines. PLoS One 7:e32596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Green SJ, Dulvy NK, Brooks AM, Akins JL, Cooper AB, Miller S, Côté IM (2014) Linking removal targets to the ecological effects of invaders: a predictive model and field test. Ecol Appl 24:1311–1322

    Article  Google Scholar 

  20. Hackerott S, Valdivia A, Green SJ, Côté IM, Cox CE, Akins L, Layman CA, Precht WF, Bruno JF (2013) Native predators do not influence invasion success of Pacific lionfish on Caribbean reefs. PLoS One 8:e68259

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Hamner RM, Freshwater DW, Whitfield PE (2007) Mitochondrial cytochrome b analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic. J Fish Biol 71:214–222

    CAS  Article  Google Scholar 

  22. Hanisko D, Rester J (2011) Gag grouper. Gulf of Mexico data atlas. Stennis Space Center (MS): National Centers for Environmental Information, NOAA. http://gulfatlas.noaa.gov/

  23. Hanisko D, Rester J (2012) Yellowedge grouper, Gulf of Mexico data atlas. Stennis Space Center (MS): National Centers for Environmental Information, NOAA. http://gulfatlas.noaa.gov/

  24. Hanisko D, Rester J, Scott-Denton E, Siceloff L, Williams J. (2015) Red snapper, red grouper, vermillion snapper, Gulf of Mexico data atlas. Stennis Space Center (MS): National Centers for Environmental Information, NOAA. http://gulfatlas.noaa.gov/

  25. Johnston MW, Akins JA (2016) The non-native royal damsel (Neopomacentrus cyanomos) in the southern Gulf of Mexico; an invasion risk? Mar Biol 163:1–14

    CAS  Article  Google Scholar 

  26. Johnston MW, Purkis SJ (2014a) Lionfish in the eastern tropical and north Pacific; a cellular automaton approach to risk assessment. Biol Invasions 16:2681–2695

    Article  Google Scholar 

  27. Johnston MW, Purkis SJ (2014b) Are lionfish set for a Mediterranean invasion? Modelling explains why this is unlikely to occur. Mar Pollut Bull 88:138–147

    CAS  Article  PubMed  Google Scholar 

  28. Johnston MW, Purkis SJ (2015) A coordinated and sustained international strategy is required to turn the tide on the Atlantic lionfish invasion. Mar Ecol Prog Ser 533:219–235

    Article  Google Scholar 

  29. Johnston MW, Purkis SJ (2016) Forecasting the success of invasive marine species; lessons learned from purposeful reef fish releases in the Hawaiian Islands. Fish Res 174:190–200

    Article  Google Scholar 

  30. Johnston MW, Purkis SJ, Dodge RE (2015) Measuring Bahamian lionfish impacts to marine ecological services using habitat equivalency analysis. Mar Biol 162:2501–2512

    Article  Google Scholar 

  31. Kimball ME, Miller JM, Whitfield PE, Hare JA (2004) Thermal tolerance and potential distribution of invasive lionfish (Pterois volitans/miles complex) on the east coast of the United States. Mar Ecol Prog Ser 283:269–278

    Article  Google Scholar 

  32. Luiz OJ, Floeter SR, Rocha LA, Ferreira CE (2013) Perspectives for the lionfish invasion in the South Atlantic: are Brazilian reefs protected by the currents. Mar Ecol Prog Ser 485:1–7

    Article  Google Scholar 

  33. Morris JA Jr, Akins JL (2009) Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environ Biol Fishes 86:389–398

    Article  Google Scholar 

  34. Morris JA Jr, Whitfield PE (2009) Biology, ecology, control and management of the invasive Indo-Pacific lionfish: an updated integrated assessment. NOAA Technical Memorandum 99, Center for Coastal Fisheries and Habitat Research, National Ocean Service, NOAA, Beaufort, NC

  35. Morris JA Jr, Shertzer KW, Rice JA (2011) A stage-based matrix population model of invasive lionfish with implications for control. Biol Invasions 13:7–12

    Article  Google Scholar 

  36. Mumby PJ, Harborne AR, Brumbaugh DR (2011) Grouper as a natural biocontrol of invasive lionfish. PLoS One 6:e21510

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. NMFS (National Marine Fisheries Service) (2010) Fisheries of the United States 2010, Fisheries Statistics Division, National Marine Fisheries Service, NOAA, Silver Spring, MA

  38. Raymond W, Hixon M, Albins M, Pusack T, Ingemen K (2012) Interactions between invasive lionfish and native Nassau grouper. Environ Biol Fishes 98:57–65

    Article  Google Scholar 

  39. Robertson DR, Simoes N, Rodriguez CG, Piñeros VJ, Perez-España H (2016) An Indo-Pacific damselfish well established in the southern Gulf of Mexico: prospects for a wider, adverse invasion. J Ocean Sci Found 19:1–17

    Google Scholar 

  40. Scott-Denton E, Cryer PF, Gocke JP, Harrelson MR, Kinsella DL, Pulver JR, Smith RC, Williams JA (2011) Descriptions of the US Gulf of Mexico reef fish bottom longline and vertical line fisheries based on observer data. Marine Fisheries Review 73:1–26

    Google Scholar 

  41. Sellers AJ, Ruiz GM, Leung B, Torchin ME (2015) Regional variation in parasite species richness and abundance in the introduced range of the invasive lionfish, Pterois volitans. PLoS One 10:e0131075

    Article  PubMed  PubMed Central  Google Scholar 

  42. Switzer TS, Tremain DM, Keenan SF, Stafford CJ, Parks SL, McMichael RH Jr (2015) Temporal and spatial dynamics of the lionfish invasion in the eastern Gulf of Mexico: perspectives from a broadscale trawl survey. Mar Coast Fish 7:10–17

    Article  Google Scholar 

  43. USGS NAS (2015) United States Geological Survey nonindigenous aquatic species database (USGS NAS). http://nas.er.usgs.gov

  44. Valdez-Moreno M, Quintal-Lizama C, Gómez-Lozano R, del Carmen García-Rivas M (2012) Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS One 7:e36636

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Whitfield PE, Hare JA, David AW, Harter SL, Munoz RC, Addison CM (2007) Abundance estimates of the Indo-Pacific lionfish Pterois volitans/miles complex in the Western North Atlantic. Biol Invasions 9:53–64

    Article  Google Scholar 

  46. Whitfield PE, Gardner T, Vives SP, Gilligan MR, Courtney WR, Ray GC, Hare JA (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser 235:289–297

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Alex Fogg of the Florida Fish and Wildlife Commission for providing thoughtful insight and his observations of WFS lionfish. We also thank Dr. Claire Paris and four anonymous reviewers whose helpful critiques strengthened this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Johnston.

Additional information

Communicated by Editor Howard R. Lasker

Electronic supplementary material

Fig. S1

Flowchart illustrating the process logic of the model (TIFF 1078 kb)

Video S1

Three-year simulation of virtual lionfish larvae from the Meso-American barrier reef as forecast by the model. Red squares at the start of the simulation show founder locations. Recruitment locations similarly designated throughout the animation. Circles represent individual larva, color-coded from cold (blue day one) to hot (red day 31) spanning the pelagic larval duration. Black graduated arrows indicate strength and direction of water flow. Water depth indicated in greyscale from deep (black) to shallow (white) (AVI 410150 kb)

Supplementary material 3 (DOCX 49 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnston, M.W., Bernard, A.M. & Shivji, M.S. Forecasting lionfish sources and sinks in the Atlantic: are Gulf of Mexico reef fisheries at risk?. Coral Reefs 36, 169–181 (2017). https://doi.org/10.1007/s00338-016-1511-3

Download citation

Keywords

  • Lionfish
  • Gulf of Mexico
  • Red grouper
  • Grouper and snapper fisheries
  • Computer modeling
  • Invasive species