Coral Reefs

, Volume 36, Issue 1, pp 13–25 | Cite as

Coral calcification under environmental change: a direct comparison of the alkalinity anomaly and buoyant weight techniques

  • Verena Schoepf
  • Xinping Hu
  • Michael Holcomb
  • Wei-Jun Cai
  • Qian Li
  • Yongchen Wang
  • Hui Xu
  • Mark E. Warner
  • Todd F. Melman
  • Kenneth D. Hoadley
  • D. Tye Pettay
  • Yohei Matsui
  • Justin H. Baumann
  • Andréa G. Grottoli
Report

Abstract

Two primary methods—the buoyant weight (BW) and alkalinity anomaly (AA) techniques—are currently used to quantify net calcification rates (G) in scleractinian corals. However, it remains unclear whether they are directly comparable since the few method comparisons conducted to date have produced inconsistent results. Further, such a comparison has not been made for tropical corals. We directly compared GBW and GAA in four tropical and one temperate coral species cultured under various pCO2, temperature, and nutrient conditions. A range of protocols for conducting alkalinity depletion incubations was assessed. For the tropical corals, open-top incubations with manual stirring produced GAA that were highly correlated with and not significantly different from GBW. Similarly, GAA of the temperate coral was not significantly different from GBW when incubations provided water motion using a pump, but were significantly lower than GBW by 16% when water motion was primarily created by aeration. This shows that the two techniques can produce comparable calcification rates in corals but only when alkalinity depletion incubations are conducted under specific conditions. General recommendations for incubation protocols are made, especially regarding adequate water motion and incubation times. Further, the re-analysis of published data highlights the importance of using appropriate regression statistics when both variables are random and measured with error. Overall, we recommend the AA technique for investigations of community and short-term day versus night calcification, and the BW technique to measure organism calcification rates integrated over longer timescales due to practical limitations of both methods. Our findings will facilitate the direct comparison of studies measuring coral calcification using either method and thus have important implications for the fields of ocean acidification research and coral biology in general.

Keywords

Calcification Buoyant weight Alkalinity anomaly Method comparison Ocean acidification Incubation 

Supplementary material

338_2016_1507_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)

References

  1. Anthony KRN, Kleypas JA, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry — implications for impacts of ocean acidification. Glob Chang Biol 17:3655–3666CrossRefGoogle Scholar
  2. Bak RPM (1973) Coral weight increment in situ. A new method to determine coral growth. Mar Biol 20:45–49CrossRefGoogle Scholar
  3. Broecker WS, Takahashi T (1966) Calcium carbonate precipitation on the Bahama Banks. J Geophys Res 71:1575–1602CrossRefGoogle Scholar
  4. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefPubMedGoogle Scholar
  5. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325CrossRefPubMedGoogle Scholar
  6. Chan NCS, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Chang Biol 19:282–290CrossRefPubMedGoogle Scholar
  7. Chisholm JRM, Gattuso J-P (1991) Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol Oceanogr 36:1232–1239CrossRefGoogle Scholar
  8. Comeau S, Carpenter RC, Edmunds PJ (2013) Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc R Soc Lond B Biol Sci 280:20122374CrossRefGoogle Scholar
  9. Comeau S, Edmunds PJ, Lantz CA, Carpenter RC (2014a) Water flow modulates the response of coral reef communities to ocean acidification. Sci Rep 4:06681CrossRefGoogle Scholar
  10. Comeau S, Carpenter RC, Nojiri Y, Putnam HM, Sakai K, Edmunds PJ (2014b) Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Proc R Soc Lond B Biol Sci 281:20141339CrossRefGoogle Scholar
  11. Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Bio Ecol 115:67–77CrossRefGoogle Scholar
  12. Gazeau F, Urbini L, Cox TE, Alliouane S, Gattuso JP (2015) Comparison of the alkalinity and calcium anomaly techniques to estimate rates of net calcification. Mar Ecol Prog Ser 527:1–12CrossRefGoogle Scholar
  13. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck R, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  14. Holcomb M, McCorkle DC, Cohen AL (2010) Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Bio Ecol 386:27–33CrossRefGoogle Scholar
  15. Holcomb M, Cohen AL, McCorkle DC (2012) An investigation of the calcification response of the sceractinian coral Astrangia poculata to elevated pCO2 and the effects of nutrients, zooxanthellae and gender. Biogeosciences 9:29–39CrossRefGoogle Scholar
  16. Holcomb M, Tambutté E, Allemand D, Tambutté S (2014) Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen. PeerJ 2:e375CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jacques TG, Pilson MEQ (1980) Experimental ecology of the temperate scleractinian coral Astrangia danae I. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar Biol 60:167–178CrossRefGoogle Scholar
  18. Jokiel PL (1978) Effect of water motion on reef corals. J Exp Mar Bio Ecol 35:87–97CrossRefGoogle Scholar
  19. Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: Stoddart DR, Johannes RE (eds) Coral reefs: resesarch methods. UNESCO, Paris, pp 529–541Google Scholar
  20. Kleypas J, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120CrossRefPubMedGoogle Scholar
  21. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654CrossRefGoogle Scholar
  22. Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, AmsterdamGoogle Scholar
  23. Maier C, Schubert A, Berzunza Sànchez MM, Weinbauer MG, Watremez P, Gattuso J-P (2013) End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PLoS One 8:e62655CrossRefPubMedPubMedCentralGoogle Scholar
  24. Marubini F, Ferrier-Pages C, Cuif J-P (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proc R Soc Lond B Biol Sci 270:179–184CrossRefGoogle Scholar
  25. Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162CrossRefGoogle Scholar
  26. Murillo LJA, Jokiel PL, Atkinson MJ (2014) Alkalinity to calcium flux ratios for corals and coral reef communities: variances between isolated and community conditions. PeerJ 2:e249CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422CrossRefPubMedGoogle Scholar
  28. Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, New YorkCrossRefGoogle Scholar
  29. Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, LuxembourgGoogle Scholar
  30. Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso J-P (2010) Response of the temperate coral Cladocora caespistosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300CrossRefGoogle Scholar
  31. Sabine CL, Feely RF, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefPubMedGoogle Scholar
  32. Schoepf V, Grottoli AG, Warner M, Cai W-J, Melman TF, Hoadley KD, Pettay DT, Hu X, Li Q, Xu H, Wang Y, Matsui Y, Baumann J (2013) Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One 8:e75049CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sebens KP, Helmuth B, Carrington E, Agius B (2003) Effects of water flow on growth and energetics of the scleractinian coral Agaricia tenuifolia in Belize. Coral Reefs 22:35–47Google Scholar
  34. Smith SV, Pesret F (1974) Processes of carbon dioxide flux in the Fanning Atoll lagoon. Pac Sci 48:225–245Google Scholar
  35. Smith SV, Key GS (1975) Carbon dioxide and metabolism in marine environments. Limnol Oceanogr 20:493–495CrossRefGoogle Scholar
  36. Smith SV, Kinsey DW (1978) Calcification and organic carbon metabolism as indicated by carbon dioxide. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. United Nations, Paris, pp 469–485Google Scholar
  37. Spencer Davies P (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395CrossRefGoogle Scholar
  38. Steller DL, Hernández-Ayón JM, Cabello-Pasini A (2007) Effect of temperature on photosynthesis, growth and calcification rates of the free-living coralline alga Lithophyllum margaritae. Ciencias Marinas 33:441–456Google Scholar
  39. Tambutté E, Allemand D, Bourge I, Gattuso JP, Jaubert J (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Verena Schoepf
    • 1
    • 2
  • Xinping Hu
    • 3
  • Michael Holcomb
    • 2
    • 4
  • Wei-Jun Cai
    • 5
    • 6
  • Qian Li
    • 6
    • 7
  • Yongchen Wang
    • 6
  • Hui Xu
    • 6
    • 8
  • Mark E. Warner
    • 9
  • Todd F. Melman
    • 10
  • Kenneth D. Hoadley
    • 9
  • D. Tye Pettay
    • 9
  • Yohei Matsui
    • 1
  • Justin H. Baumann
    • 1
    • 11
  • Andréa G. Grottoli
    • 1
  1. 1.School of Earth SciencesThe Ohio State UniversityColumbusUSA
  2. 2.ARC Centre of Excellence for Coral Reef Studies, UWA Oceans Institute and School of Earth and EnvironmentUniversity of Western AustraliaCrawleyAustralia
  3. 3.Department of Physical and Environmental SciencesTexas A&M University – Corpus ChristiCorpus ChristiUSA
  4. 4.Department of Marine Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleUSA
  5. 5.School of Marine Science and PolicyUniversity of DelawareNewarkUSA
  6. 6.Department of Marine SciencesThe University of GeorgiaAthensUSA
  7. 7.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina
  8. 8.Department of Marine ScienceZhejiang UniversityHangzhouChina
  9. 9.School of Marine Science and PolicyUniversity of DelawareLewesUSA
  10. 10.Reef Systems Coral FarmNew AlbanyUSA
  11. 11.Department of Marine SciencesUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations