Coral Reefs

, Volume 35, Issue 4, pp 1383–1392 | Cite as

Symbiosis-specific changes in dimethylsulphoniopropionate concentrations in Stylophora pistillata along a depth gradient

  • Esther M. Borell
  • Daniel T. Pettay
  • Michael Steinke
  • Mark Warner
  • Maoz Fine


Scleractinian corals are prolific producers of dimethylsulphoniopropionate (DMSP), but ecophysiological mechanisms influencing cellular concentrations are uncertain. While DMSP is often proposed to function as an antioxidant, interactions between specific host–symbiont genotype associations, plasticity in DMSP concentrations and environmental conditions that can either exert or alleviate oxidative stress are unclear. We used long-term (6 months) reciprocal transplantation of Stylophora pistillata hosting two distinct symbiont phylotypes along a depth gradient, clades A (<20 m) and C (>20 m), to assess the effect of change in depth (light intensity) on DMSP concentrations in relation to symbiont genotype and photoacclimation in corals between 3 and 50 m in the Gulf of Aqaba. Bathymetric distribution of total DMSP (DMSPt) per cell varied significantly while particulate DMSP (DMSPp) appeared to be unaffected by depth. Highest DMSPt concentrations in control corals occurred at 20 m. While 3-m transplants showed a significant increase in DMSPt concentration at 20 m and became affiliated with an additional genotype (C72), 50-m transplants largely persisted with their original genotype and exhibited no significant changes in DMSPt concentrations. DMSPt concentrations in transplants at both 3 and 50 m, on the other hand, increased significantly while all corals maintained their original symbiont genotypes. Photoacclimation differed significantly with transplantation direction relative to the controls. Symbionts in 3-m transplants at 20 m exhibited no changes in chlorophyll a (chl a) concentration, cell density or cell diameter while symbiont densities decreased and chl a concentrations increased significantly at 50 m. In contrast, symbiont densities in 50-m transplants remained unaffected across depths while symbiont diameters decreased. Chl a concentrations decreased at 20 m and increased at 3 m. Our results indicate that DMSPt concentrations following changes in depth are not only a function of symbiont genotype but result from different acclimation abilities of both symbiotic partners.


Coral transplantation DMSP Light Photoacclimation Symbiodinium 



We thank Guy Levy, Genadi Salzman and Oded Ben-Shaprut for help with the transplantation experiments and are grateful for the continuous support of the IUI staff. Thanks to Tracy Lawson for assistance with the preparation of the figures. Much appreciated are the constructive comments of two anonymous reviewers, which significantly improved this manuscript. EMB was funded by the Minerva fellowship program, DTP was supported by the NSF, and financial support to MF was provided by the EU MedSeA project.


  1. Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A (2009) Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta 73:5333–5342CrossRefGoogle Scholar
  2. Allahverdiyeva Y, Suorsa M, Tikkanen M, Aro E-M (2015) Photoprotection of photosystems in fluctuating light intensities. J Exp Bot 66:2427–2436CrossRefPubMedGoogle Scholar
  3. Baker AC (2001) Ecosystems: reef corals bleach to survive change. Nature 411:765–766CrossRefPubMedGoogle Scholar
  4. Baker AC, Glynn PW, Riegel B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471CrossRefGoogle Scholar
  5. Banaszak AT, Lesser MP, Kuffner IB, Ondrusek M (1998) Relationship between ultraviolet (UV) radiation and mycosporine-like amino acids (MAAs) in marine organisms. Bull Mar Sci 63:617–628Google Scholar
  6. Broadbent AD, Jones GB (2004) DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Mar Freshw Res 55:849–855CrossRefGoogle Scholar
  7. Byler KA, Carmi-Veal M, Fine M, Goulet TL (2013) Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One 8:e59596CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cohen I, Dubinsky Z (2015) Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: photosynthesis and calcification. Front Mar Sci 2:45CrossRefGoogle Scholar
  9. Davy SK, Lucas IA, Turner JR (1996) Carbon budgets in temperate anthozoan–dinoflagellate symbioses. Mar Biol 126:773–783CrossRefGoogle Scholar
  10. Deschaseaux ESM, Beltran VH, Jones GB, Deseo MA, Swan HB, Harrison PL, Eyre BD (2014a) Comparative response of DMS and DMSP concentrations in Symbiodinium clades C1 and D1 under thermal stress. J Exp Mar Bio Ecol 459:181–189CrossRefGoogle Scholar
  11. Deschaseaux ESM, Jones GB, Deseo MA, Shepherd KM, Kiene RP, Swan HB, Harrison PL, Eyre BD (2014b) Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol Oceanogr 59:758–768CrossRefGoogle Scholar
  12. Dishon G, Dubinsky Z, Fine M, Iluz D (2012) Underwater light field patterns in subtropical coastal waters: a case study from the Gulf of Eilat (Aqaba). Isr J Plant Sci 60:265–275CrossRefGoogle Scholar
  13. Dustan P (1982) Depth-dependent photoadaption by zooxanthellae of the reef coral Montastrea annularis. Mar Biol 68:253–264CrossRefGoogle Scholar
  14. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146CrossRefPubMedGoogle Scholar
  15. Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174CrossRefGoogle Scholar
  16. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709CrossRefGoogle Scholar
  17. Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Glob Chang Biol 19:3640–3647CrossRefPubMedGoogle Scholar
  18. Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263CrossRefPubMedGoogle Scholar
  19. Fischer E, Jones G (2012) Atmospheric dimethysulphide production from corals in the Great Barrier Reef and links to solar radiation, climate and coral bleaching. Biogeochemistry 110:31–46CrossRefGoogle Scholar
  20. Fleischmann EM (1989) The measurement and penetration of ultraviolet radiation into tropical marine water. Limnol Oceanogr 34:1623–1629CrossRefGoogle Scholar
  21. Frade PR, Bongaerts P, Winkelhagen AJS, Tonk L, Bak RPM (2008a) In situ photobiology of corals over large depth ranges: a multivariate analysis on the roles of environment, host, and algal symbiont. Limnol Oceanogr 53:2711–2723CrossRefGoogle Scholar
  22. Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM (2008b) Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703CrossRefPubMedGoogle Scholar
  23. Goulet TL, Cook CB, Goulet D (2005) Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host–symbiont combinations in the Aiptasia pallida/Symbiodinium symbiosis. Limnol Oceanogr 50:1490–1498CrossRefGoogle Scholar
  24. Hill RW, Dacey JWH, Krupp DA (1995) Dimethylsulfoniopropionate in reef corals. Bull Mar Sci 57:489–494Google Scholar
  25. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  26. Iglesias-Prieto R, Trench RK (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175CrossRefGoogle Scholar
  27. Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B Biol Sci 271:1757–1763CrossRefGoogle Scholar
  28. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194Google Scholar
  29. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Lond B Biol Sci 275:1359–1365CrossRefGoogle Scholar
  30. Jones GB, Fischer E, Deschaseaux ESM, Harrison PL (2014) The effect of coral bleaching on the cellular concentration of dimethylsulphoniopropionate in reef corals. J Exp Mar Bio Ecol 460:19–31CrossRefGoogle Scholar
  31. Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, Washington DC, pp 167–182CrossRefGoogle Scholar
  32. Kirst GO (1996) Osmotic adjustment in phytoplankton and macroalgae. In: Kiene R, Visscher P, Keller M, Kirst G, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Springer, US, pp 121–129CrossRefGoogle Scholar
  33. LaJeunesse T (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  34. Lajeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134CrossRefPubMedGoogle Scholar
  35. LaJeunesse TC, Loh WKW, Van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  36. Lesser MPL, Mazel C, Phinney D, Yentsch CS (2000) Light absorption and utilization by colonies of the congeneric hermatypic corals Montastraea faveolata and Montastraea cavernosa. Limnol Oceanogr 45:76–86CrossRefGoogle Scholar
  37. Loram JE, Trapido-Rosenthal HG, Douglas AE (2007) Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol Ecol 16:4849–4857CrossRefPubMedGoogle Scholar
  38. Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102CrossRefGoogle Scholar
  39. Mayfield AB, Gates RD (2007) Osmoregulation in anthozoan–dinoflagellate symbiosis. Comp Biochem Physiol A Mol Integr Physiol 147:1–10CrossRefPubMedGoogle Scholar
  40. McLenon AL, DiTullio GR (2012) Effects of increased temperature on dimethylsulfoniopropionate (DMSP) concentration and methionine synthase activity in Symbiodinium microadriaticum. Biogeochemistry 110:17–29CrossRefGoogle Scholar
  41. Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B Biol Sci 222:181–202CrossRefGoogle Scholar
  42. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497CrossRefPubMedGoogle Scholar
  43. Raina J-B, Tapiolas DM, Forêt S, Lutz A, Abrego D, Ceh J, Seneca FO, Clode PL, Bourne DG, Willis BL (2013) DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502:677–680CrossRefPubMedGoogle Scholar
  44. Reopanichkul P, Schlacher TA, Carter RW, Worachananant S (2009) Sewage impacts coral reefs at multiple levels of ecological organization. Mar Pollut Bull 58:1356–1362CrossRefPubMedGoogle Scholar
  45. Richier S, Cottalorda J-M, Guillaume MMM, Fernandez C, Allemand D, Furla P (2008) Depth-dependant response to light of the reef building coral, Pocillopora verrucosa: implication of oxidative stress. J Exp Mar Bio Ecol 357:48–56CrossRefGoogle Scholar
  46. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral–algal symbiosis. Proc R Soc Lond B Biol Sci 92:2850–2853Google Scholar
  47. Sampayo EM, Dove S, LaJeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519CrossRefPubMedGoogle Scholar
  48. Shick JM, Lesser MP, Dunlap WC, Stochaj WR, Chalker BE, Won JW (1995) Depth-dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma. Mar Biol 122:41–51CrossRefGoogle Scholar
  49. Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Glob Chang Biol 11:1–11CrossRefGoogle Scholar
  50. Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Netherlands Journal of Sea Research 43:183–197CrossRefGoogle Scholar
  51. Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83:245–275CrossRefGoogle Scholar
  52. Steinke M, Brading P, Kerrison P, Warner ME, Suggett DJ (2011) Concentrations of dimethylsulfoniopropionate and dymethyl sulfide are strain-specific in symbiotic dinoflagellates (Symbiodinium sp., Dinophyceae). J Phycol 47:775–783CrossRefPubMedGoogle Scholar
  53. Stimson J, Kinzie RA (1991) The temporal release of zooxanthellae from the reef coral Pocillopora daminicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Bio Ecol 153:63–74CrossRefGoogle Scholar
  54. Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320CrossRefPubMedGoogle Scholar
  55. Titlyanov EA, Titlyanova TV, Yamazato K, Van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. J Exp Mar Bio Ecol 263:211–225CrossRefGoogle Scholar
  56. Tout J, Jeffries TC, Petrou K, Tyson GW, Webster NS, Garren M, Stocker R, Ralph PJ, Seymour JR (2015) Chemotaxis by natural populations of coral reef bacteria. ISME J 9:1764–1777CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tremblay P, Grover R, Maguer JF, Hoogenboom M, Ferrier-Pagès C (2014) Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs 33:1–13CrossRefGoogle Scholar
  58. Vallina SM, Simó R (2007) Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315:506–508CrossRefPubMedGoogle Scholar
  59. Van Alstyne KL, Dominique VJ III, Muller-Parker G (2009) Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone–zooxanthella symbiosis? Coral Reefs 28:167–176CrossRefGoogle Scholar
  60. Warner ME, Berry-Lowe S (2006) Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J Exp Mar Bio Ecol 339:86–95CrossRefGoogle Scholar
  61. Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066CrossRefPubMedGoogle Scholar
  62. Winters G, Beer S, Zvi BB, Brickner I, Loya Y (2009) Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Mar Ecol Prog Ser 384:107–119CrossRefGoogle Scholar
  63. Wooldridge SA (2008) Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar Pollut Bull 58:745–751CrossRefGoogle Scholar
  64. Yancey PH, Heppenstall M, Ly S, Andrell RM, Gates RD, Carter VL, Hagedorn M (2010) Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates. Physiol Biochem Zool 83:167–173CrossRefPubMedGoogle Scholar
  65. Yost DM, Jones RJ, Mitchelmore CL (2010) Alterations in dimethylsulfoniopropionate (DMSP) levels in the coral Montastrea franksi in response to copper exposure. Aquat Toxicol 98:367–373CrossRefPubMedGoogle Scholar
  66. Yost DM, Jones R, Rowe CL, Mitchelmore CL (2012) Quantification of total and particulate dimethylsulfoniopropionate (DMSP) in five Bermudian coral species across a depth gradient. Coral Reefs 31:561–570CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Esther M. Borell
    • 1
  • Daniel T. Pettay
    • 2
  • Michael Steinke
    • 3
  • Mark Warner
    • 2
  • Maoz Fine
    • 1
    • 4
  1. 1.The Interuniversity Institute for Marine SciencesEilatIsrael
  2. 2.College of Earth, Ocean, and EnvironmentUniversity of DelawareLewesUSA
  3. 3.Coral Reef Research Unit, School of Biological SciencesUniversity of EssexColchesterUK
  4. 4.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat GanIsrael

Personalised recommendations