Skip to main content
Log in

The potential of azooxanthellate poriferan hosts to assess the fundamental and realized Symbiodinium niche: evaluating a novel method to initiate Symbiodinium associations

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

On coral reefs, Symbiodinium spp. are found in most cnidarian species, but reside in only a small number of sponge species. Of the sponges that do harbor Symbiodinium, most are found in the family Clionaidae, which represents a minor fraction of the poriferan diversity on a reef. Our goal was to determine whether Symbiodinium can be taken up by sponge hosts that do not typically harbor these algal symbionts, and then to follow the fate of any Symbiodinium that enter the intracellular space. We used the filter-feeding capacity of sponges to initiate intracellular interactions between sponge-specialist clade G Symbiodinium and six sponge species that do not associate with Symbiodinium. Using a pulse-chase experimental design, we determined that all of the species we examined captured Symbiodinium, and undamaged intracellular algae were found up to 1 h after inoculation. In a longer-term experiment, Symbiodinium populations in Amphimedon erina persisted in sponge cells for at least 5 d post-inoculation. While no evidence of digestion was detected, the population decreased exponentially after inoculation. We contrast these data with the characteristics of symbiont acquisition and establishment in Cliona varians, which normally harbors Symbiodinium. Explants from experimentally derived aposymbiotic sponges were placed in the field where they acquired Symbiodinium from ambient sources (i.e., we did not inoculate them as in the pulse-chase experiments). We began to detect Symbiodinium cells in C. varians after 12 d, and the algal population increased exponentially until densities approached those typically found in this host (after ~128 d). We discuss the implications of this work in light of growing interest in the evolution of specificity between hosts and symbionts, and the fundamental and realized niche of Symbiodinium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abrego D, van Oppen MJH, Willis BL (2009) Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol 18:3518–3531

    Article  PubMed  Google Scholar 

  • Amann R, Springer N, Schönhuber W, Ludwig W, Schmid EN, Müller KD, Michel R (1997) Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63:115–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baghdasarian G, Muscatine L (2000) Preferential expulsion of dividing algal cells as a mechanism for regulating algal cnidarian symbiosis. Biol Bull 199:278–286

    Article  CAS  PubMed  Google Scholar 

  • Bahram M, Kõljalg U, Kohout P, Mirshahvaladi S, Tedersoo L (2013) Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza 23:11–19

    Article  PubMed  Google Scholar 

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  PubMed  Google Scholar 

  • Bay LK, Cumbo VR, Abrego D, Kool JT, Ainsworth TD, Willis BL (2011) Infection dynamics vary between Symbiodinium types and cell surface treatments during establishment of endosymbiosis with coral larvae. Diversity 3:356–374

    Article  CAS  Google Scholar 

  • Byler KA, Carmi-Veal M, Fine M, Goulet TL (2013) Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PloS One 8:e59596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago, IL, 221 pp

  • Coffroth MA, Santos SR, Goulet TL (2001) Early ontogenetic expression of specificity in a cnidarian–algal symbiosis. Mar Ecol Prog Ser 222:85–96

    Article  Google Scholar 

  • Colley NJ, Trench RK (1983) Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proc Biol Sci 219:61–82

    Article  CAS  Google Scholar 

  • Colley NJ, Trench RK (1985) Cellular events in the reestablishment of a symbiosis between a marine dinoflagellate and a coelenterate. Cell Tissue Res 239:93–103

    Article  CAS  PubMed  Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian–dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimond J, Carrington E (2008) Symbiosis regulation in a facultatively symbiotic temperate coral: zooxanthellae division and expulsion. Coral Reefs 27:601–604

    Article  Google Scholar 

  • Domotor SL, D’Elia CF (1986) Cell-size distributions of zooxanthellae in culture and symbiosis. Biol Bull 170:519–525

    Article  Google Scholar 

  • Douglas AE (2010) The symbiotic habit. Princeton University Press, Princeton, NJ, 214 pp

  • Erwin PM, Thacker RW (2007) Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge communities. J Mar Biol Assoc UK 87:1683–1692

    Article  CAS  Google Scholar 

  • Erwin PM, Thacker RW (2008) Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 17:2937–2947

    Article  CAS  PubMed  Google Scholar 

  • Fankboner PV (1971) Intracellular digestion of symbiontic zooxanthellae by host amoebocytes in giant clams (Bivalvia: Tridacnidae), with a note on the nutritional role of the hypertrophied siphonal epidermis. Biol Bull 141:222–234

    Article  Google Scholar 

  • Fitt WK, Trench RK (1983) The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol 94:421–432

    Article  Google Scholar 

  • Franklin DJ, Hoegh-Guldberg O, Jones RJ, Berges JA (2004) Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar Ecol Prog Ser 272:117–130

    Article  Google Scholar 

  • Fujise L, Yamashita H, Suzuki G, Koike K (2013) Expulsion of zooxanthellae (Symbiodinium) from several species of scleractinian corals: comparison under non-stress conditions and thermal stress conditions. Galaxea 15:29–36

    Article  Google Scholar 

  • Fujise L, Yamashita H, Suzuki G, Sasaki K, Liao LM, Koike K (2014) Moderate thermal stress causes active and immediate expulsion of photosynthetically damaged zooxanthellae (Symbiodinium) from Corals. PLoS One 9:e114321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garson MJ, Flowers AE, Webb RI, Charan RD, McCafferty EJ (1998) A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by Percoll density gradient fractionation. Cell Tissue Res 293:365–373

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Cabrera MC, Ortiz JC, Loh WKW, Ward S, Hoegh-Guldberg O (2008) Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27:219–226

    Article  Google Scholar 

  • Granados C, Camargo C, Zea S, Sanchez J (2008) Phylogenetic relationships among zooxanthellae (Symbiodinium) associated to excavating sponges (Cliona spp.) reveal an unexpected lineage in the Caribbean. Mol Phylogenet Evol 49:554–560

    Article  CAS  PubMed  Google Scholar 

  • Hambleton EA, Guse A, Pringle JR (2014) Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. J Exp Biol 217:1613–1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Harii S, Yasuda N, Rodriguez-Lanetty M, Irie T, Hidaka M (2009) Onset of symbiosis and distribution patterns of symbiotic dinoflagellates in the larvae of scleractinian corals. Mar Biol 156:1203–1212

    Article  Google Scholar 

  • Hill MS (1996) Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Mar Biol 125:649–654

    Article  Google Scholar 

  • Hill MS (2014) Production possibility frontiers in phototroph:heterotroph symbioses: trade-offs in allocating fixed carbon pools and the challenges these alternatives present for understanding the acquisition of intracellular habitats. Front Microbiol 5:357

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill MS, Hill A (2012) The magnesium inhibition and arrested phagosome hypotheses: new perspectives on the evolution and ecology of Symbiodinium symbioses. Biol Rev Camb Philos Soc 87:804–821

    Article  Google Scholar 

  • Hill MS, Allenby A, Ramsby B, Schönberg C, Hill A (2011) Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol 59:81–88

    Article  PubMed  Google Scholar 

  • Imsiecke G (1993) Ingestion, digestion, and egestion in Spongilla lacustris (Porifera, Spongillidae) after pulse feeding with Chlamydomonas reinhardtii (Volvocales). Zoomorphology 113:233–244

    Article  Google Scholar 

  • Jeong HJ, Du Yoo Y, Kang NS, Lim AS, Seong KA, Lee SY, Lee K (2012) Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc Natl Acad Sci U S A 109:12604–12609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempf SC (1984) Symbiosis between the zooxanthella Symbiodinium (= Gymnodinium) microadriaticum (Freudenthal) and four species of nudibranchs. Biol Bull 166:110–126

    Article  Google Scholar 

  • Koike K, Yamashita H, Oh-Uchi A, Tamaki M, Hayashibara T (2007) A quantitative real-time PCR method for monitoring Symbiodinium in the water column. Galaxea 9:1–12

    Article  Google Scholar 

  • Leys SP, Eerkes-Medrano DI (2006) Feeding in a calcareous sponge: particle uptake by pseudopodia. Biol Bull 211:157–171

    Article  PubMed  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Maldonado M, Zhang X, Cao X, Lingyun X, Cao H, Zhang W (2010) Selective feeding by sponges on pathogenic microbes: a reassessment of potential for abatement of microbial pollution. Mar Ecol Prog Ser 403:75–89

    Article  Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution. W.H. Freeman, New York, 452 pp

  • Maruyama T, Heslinga G (1997) Fecal discharge of zooxanthellae in the giant clam Tridacna derasa, with reference to their in situ growth rate. Mar Biol 127:473–477

    Article  Google Scholar 

  • McCloskey LR, Cove TG, Verde EA (1996) Symbiont expulsion from the anemone Anthopleura elegantissima (Brandt) (Cnidaria; Anthozoa). J Exp Mar Biol Ecol 195:173–186

    Article  Google Scholar 

  • Morrow C, Cárdenas P (2015) Proposal for a revised classification of the Demospongiae (Porifera). Front Zool 12:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowack ECM, Melkonian M (2010) Endosymbiotic associations within protists. Philos Trans R Soc Lond B Biol Sci 365:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal’s littoral zone: sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Oceanogr 42:178–184

    Article  CAS  Google Scholar 

  • Poppell E, Weisz JB, Spicer L, Massaro AJ, Hill A, Hill MS (2014) Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar Ecol 35:414–424

    Article  Google Scholar 

  • Ramsby B, Massaro A, Marshall E, Wilcox T, Hill M (2012) Epibiont–basibiont interactions: examination of ecological factors that may influence specialization in a two-sponge association between Geodia vosmaeri (Sollas, 1886) and Amphimedon erina (de Laubenfels, 1936). Hydrobiologia 687:331–340

    Article  Google Scholar 

  • Ravindran J, Raghukumar C, Raghukumar S (2001) Fungi in Porites lutea: association with healthy and diseased corals. Dis Aquat Organ 47:219–228

    Article  CAS  PubMed  Google Scholar 

  • Reiswig HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull 141:568–591

    Article  Google Scholar 

  • Reiswig HM (1975) Bacteria as food for temperate-water marine sponges. Can J Zool 53:582–589

    Article  Google Scholar 

  • Reiswig HM (1990) In situ feeding in two shallow-water Hexactinellid sponges. In: Rutzler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 504–510

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribes M, Coma R, Gili JM (1999) Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser 176:179–190

    Article  Google Scholar 

  • Riesgo A, Peterson K, Richardson C, Heist T, Strehlow B, McCauley M, Cotman C, Hill M, Hill A (2014) Transcriptomic analysis of differential host gene expression upon uptake of symbionts: a case study with Symbiodinium and the major bioeroding sponge Cliona varians. BMC Genomics 15:376

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Lanetty M, Krupp DA, Weis VM (2004) Distinct ITS types of Symbiodinium in clade C correlate with cnidarian/dinoflagellate specificity during onset of symbiosis. Mar Ecol Prog Ser 275:97–102

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Mar Biol 149:713–719

    Article  Google Scholar 

  • Romano JD, Sonda S, Bergbower E, Smith ME, Coppens I (2013) Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol Biol Cell 24:1974–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rützler K (1990) Associations between Caribbean sponges and photosynthetic organisms. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington DC, pp 455–466

    Google Scholar 

  • Sailer U (1989) Microscopical aspects on symbiosis of Spongilla lacustris (Porifera, Spongillidae) and green algae. Zoomorphology 108:291–296

    Article  Google Scholar 

  • Scalera-Liaci L, Sciscioli M, Lepore E, Gaino E (1999) Symbiotic zooxanthellae in Cinachyra tarentina, a non-boring Demosponge. Endocytobiosis Cell Res 13:73–82

    Google Scholar 

  • Schönberg CHL, Loh WKW (2005) Molecular identity of the unique symbiotic dinoflagellates found in the bioeroding demosponge Cliona orientalis. Mar Ecol Prog Ser 299:157–166

    Article  Google Scholar 

  • Schwarz JA (2008) Understanding the intracellular niche in cnidarian–Symbiodinium symbioses: parasites lead the way. Vie Milieu Paris 58:141–151

    Google Scholar 

  • Schwarz JA, Krupp DA, Weis VM (1999) Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol Bull 196:70–79

    Article  CAS  PubMed  Google Scholar 

  • Schwarz JA, Weis VM, Potts DC (2002) Feeding behavior and acquisition of zooxanthellae by planula larvae of the sea anemone Anthopleura elegantissima. Mar Biol 140:471–478

    Article  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer-Verlag, New York, 336 pp

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Stabili L, Licciano M, Giangrande A, Longo C, Mercurio M, Marzano CN, Corriero G (2006) Filtering activity of Spongia officinalis var. adriatica (Schmidt)(Porifera, Demospongiae) on bacterioplankton: implications for bioremediation of polluted seawater. Water Res 40:3083–3090

    Article  CAS  PubMed  Google Scholar 

  • Stambler N (2011) Marine microralgae/cyanobacteria–invertebrate symbiosis, trading energy for strategic material. In: Seckbach J, Dubinsky Z (eds) All flesh is grass: plant–animal interactions, vol 16. Springer, Dordrecht, pp 383–414

    Chapter  Google Scholar 

  • Takabayashi M, Adams LM, Pochon X, Gates RD (2012) Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai‘i and Florida. Coral Reefs 31:157–167

    Article  Google Scholar 

  • Thornhill DJ, Lewis AM, Wham DF, LaJeunesse TC (2014) Host specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367

    Article  CAS  PubMed  Google Scholar 

  • Ulstrup KE, Kühl M, Bourne DG (2007) Zooxanthellae harvested by ciliates associated with brown band disease of corals remain photosynthetically competent. Appl Environ Microbiol 73:1968–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehrl M, Steinert M, Hentschel U (2007) Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol 53:355–365

    Article  PubMed  Google Scholar 

  • Weis VM, Reynolds WS, deBoer MD, Krupp DA (2001) Host–symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs 20:301–308

    Article  Google Scholar 

  • Weisz J, Massaro A, Ramsby B, Hill M (2010) Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull 219:189–197

    Article  PubMed  Google Scholar 

  • Wilcox TP, Hill M, DeMeo K (2002) Observations on a new two-sponge symbiosis from the Florida Keys. Coral Reefs 21:198–204

    Google Scholar 

  • Wolfe BE, Pringle A (2012) Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus. ISME J 6:745–755

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation Grants 0647119 and 0829763 to MH. The University of Richmond provided summer stipends to BS and SF. We thank E. Poppell for the freeze-fracture electron micrograph in Fig. 4. C. Davis provided outstanding support for all facets of the microscopic work. All sampling was done with appropriate licenses in the State of Florida. Two anonymous reviewers provided useful feedback. The work was conducted at the Mote Tropical Research Laboratory in Summerland Key, Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Hill.

Additional information

Communicated by Biology Editor Dr. Simon Davy

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strehlow, B., Friday, S., McCauley, M. et al. The potential of azooxanthellate poriferan hosts to assess the fundamental and realized Symbiodinium niche: evaluating a novel method to initiate Symbiodinium associations. Coral Reefs 35, 1201–1212 (2016). https://doi.org/10.1007/s00338-016-1465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-016-1465-5

Keywords

Navigation