Coral Reefs

, Volume 35, Issue 3, pp 919–928 | Cite as

Inferred calcification rate of a temperate azooxanthellate caryophylliid coral along a wide latitudinal gradient

  • E. Caroselli
  • V. Brambilla
  • F. Ricci
  • G. Mattioli
  • O. Levy
  • G. Falini
  • Z. Dubinsky
  • S. Goffredo


Correlations between environmental parameters (depth temperature and solar radiation) and growth parameters (bulk skeletal density, linear extension rate and net calcification rate) of the solitary azooxanthellate coral, Caryophyllia inornata, were investigated along an 8° latitudinal gradient on the western Italian coasts. Net calcification rate correlated positively with both bulk skeletal density and linear extension rate, showing that C. inornata allocates calcification resources evenly to thickening the skeleton and increasing linear growth. Overall, the three growth parameters did not follow gradients in the two environmental parameters, showing a different trend compared to most studies on zooxanthellate corals. However, the results are in agreement with the only previous analysis of an azooxanthellate coral, Leptopsammia pruvoti, studied along the same latitudinal gradient. In a comparison of the response to temperature of all Mediterranean species whose growth has been investigated to date, azooxanthellate corals were more tolerant to temperature increases than zooxanthellate corals.


Global warming Net calcification Linear extension Skeletal density Caryophyllia inornata Scleractinia 



Thanks to S. Branchini, F. Gizzi, M. Marinozzi, S. Prantoni and F. Turano for their underwater help and assistance during the sampling procedure. The diving centers Centro Immersioni Pantelleria, Il Pesciolino, Bubble Lounge and Sub Maldive supplied logistic assistance in the field. The Scientific Diving School ( supplied technical and logistical support. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n° [249930-CoralWarm: Corals and global warming: the Mediterranean versus the Red Sea]. The experiment complied with current Italian law.


  1. Airi V, Gizzi F, Falini G, Levy O, Dubinsky Z, Goffredo S (2014) Reproductive efficiency of a Mediterranean endemic zooxanthellate coral decreases with increasing temperature along a wide latitudinal gradient. PLoS One 9:e91792CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Horani FA, Ferdelman T, Al-Moghrabi SM, de Beer D (2005) Spatial distribution of calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. Coral Reefs 24:173–180CrossRefGoogle Scholar
  3. Anthony KRN, Kerswell AP (2007) Coral mortality following extreme low tides and high solar radiation. Mar Biol 151:1623–1631CrossRefGoogle Scholar
  4. Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741CrossRefPubMedGoogle Scholar
  5. Brown BE, Dunne RP, Goodson MS, Douglas AE (2000) Marine ecology: bleaching patterns in reef corals. Nature 404:142–143CrossRefPubMedGoogle Scholar
  6. Bucher DJ, Harriott VJ, Roberts LG (1998) Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Bio Ecol 228:117–136CrossRefGoogle Scholar
  7. Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529CrossRefGoogle Scholar
  8. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central red sea. Science 329:322–325CrossRefPubMedGoogle Scholar
  9. Caroselli E, Goffredo S (2014) Mediterranean coral population dynamics: a tale of 20 years of field studies. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer Science + Business Media BV, Dordrecht, pp 275–284CrossRefGoogle Scholar
  10. Caroselli E, Mattioli G, Levy O, Falini G, Dubinsky Z, Goffredo S (2012) Inferred calcification rate of a Mediterranean azooxanthellate coral is uncoupled with sea surface temperature along an 8° latitudinal gradient. Front Zool 9:32CrossRefPubMedPubMedCentralGoogle Scholar
  11. Caroselli E, Nanni V, Levy O, Falini G, Dubinsky Z, Goffredo S (2015) Latitudinal variations in biometry and population density of a Mediterranean solitary coral. Limnol Oceanogr 60:1356–1370CrossRefGoogle Scholar
  12. Caroselli E, Ricci F, Brambilla V, Mattioli G, Levy O, Falini G, Dubinsky Z, Goffredo S (2016) Relationships between growth, population dynamics, and environmental parameters in the solitary non-zooxanthellate scleractinian coral Caryophyllia inornata along a latitudinal gradient in the Mediterranean Sea. Coral Reefs. doi: 10.1007/s00338-015-1393-9 Google Scholar
  13. Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. J Exp Mar Bio Ecol 302:249–260CrossRefGoogle Scholar
  14. Carricart-Ganivet JP (2007) Annual density banding in massive coral skeletons: result of growth strategies to inhabit reefs with high microborers’ activity? Mar Biol 153:1–5CrossRefGoogle Scholar
  15. Carricart-Ganivet JP, Merino M (2001) Growth responses of the reef-building coral Montastraea annularis along a gradient of continental influence in the southern Gulf of Mexico. Bull Mar Sci 68:133–146Google Scholar
  16. Carricart-Ganivet JP, Cabanillas-Teràn N, Cruz-Ortega I, Blanchon P (2012) Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals. PLoS One 7:e32859CrossRefPubMedPubMedCentralGoogle Scholar
  17. Coma R, Ribes M, Gili JM, Zabala M (2000) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15:448–453CrossRefPubMedGoogle Scholar
  18. Cooper TF, De’Ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Chang Biol 14:529–538CrossRefGoogle Scholar
  19. Dodge RE, Brass GW (1984) Skeletal extension, density and calcification of the reef coral, Montastrea annularis: St. Croix, U.S. Virgin Islands. Bull Mar Sci 34:288–307Google Scholar
  20. Efron B (1981) Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68:589–599CrossRefGoogle Scholar
  21. Ferrier-Pagès C, Witting J, Tambuttè E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240CrossRefGoogle Scholar
  22. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, LaJeunesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two Indo-Pacific corals, Porites cylindrica and Stylophora pistillata to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Bio Ecol 373:102–110CrossRefGoogle Scholar
  23. Goffredo S, Chadwick-Furman NE (2003) Comparative demography of mushroom corals (Scleractinia, Fungiidae) at Eilat, northern Red Sea. Mar Biol 142:411–418Google Scholar
  24. Goffredo S, Lasker HR (2008) An adaptive management approach to an octocoral fishery based on the Beverton-Holt model. Coral Reefs 27:751–761CrossRefGoogle Scholar
  25. Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F (2007) Variation in biometry and population density of solitary corals with solar radiation and sea surface temperature in the Mediterranean Sea. Mar Biol 152:351–361CrossRefGoogle Scholar
  26. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Zaccanti F (2008) Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27:623–632CrossRefGoogle Scholar
  27. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937CrossRefGoogle Scholar
  28. Goffredo S, Marchini C, Rocchi M, Airi V, Caroselli E, Falini G, Levy O, Dubinsky Z, Zaccanti F (2012a) Unusual pattern of embryogenesis of Caryophyllia inornata (Scleractinia, Caryophylliidae) in the Mediterranean Sea. Maybe agamic reproduction? J Morphol 273:943–956CrossRefPubMedGoogle Scholar
  29. Goffredo S, Caroselli E, Mezzo F, Laiolo L, Vergni P, Pasquini L, Levy O, Zaccanti F, Tribollet A, Dubinsky Z, Falini G (2012b) The puzzling presence of calcite in skeletons of modern solitary corals from the Mediterranean Sea. Geochim Cosmochim Acta 85:187–199CrossRefGoogle Scholar
  30. Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 15:281–291CrossRefGoogle Scholar
  31. Hoegh-Guldberg O (2011) The impact of climate change on coral reef ecosystems. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science + Business Media BV, Dordrecht, pp 391–403CrossRefGoogle Scholar
  32. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  33. Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamark). J Exp Mar Bio Ecol 275:63–81CrossRefGoogle Scholar
  34. Kleypas JA, McManus JW, Menez AB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159CrossRefGoogle Scholar
  35. Kleypas JA, Buddemeier RW, Eakin CM, Gattuso J-P, Guinotte J, Hoegh-Guldberg O, Iglesias-Prieto R, Jokiel PL, Langdon C, Skirving W, Strong AE (2005) Comment on “Coral reef calcification and climate change: the effect of ocean warming”. Geophys Res Lett 32:L08601CrossRefGoogle Scholar
  36. Kružić P, Sršen P, Benković L (2012) The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea. Facies 58:477–491CrossRefGoogle Scholar
  37. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Bio Ecol 245:225–243CrossRefPubMedGoogle Scholar
  38. Lough JM, Cantin NE (2014) Perspectives on massive coral growth rates in a changing ocean. Biol Bull 226:187–202PubMedGoogle Scholar
  39. Marchini C, Airi V, Fontana R, Tortorelli G, Rocchi M, Falini G, Levy O, Dubinsky Z, Goffredo S (2015) Annual reproductive cycle and unusual embryogenesis of a temperate coral in the Mediterranean Sea. PLoS One 10:e0141162CrossRefPubMedPubMedCentralGoogle Scholar
  40. Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224Google Scholar
  41. Naumann MS, Orejas C, Wild C, Ferrier-Pagès C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576CrossRefPubMedGoogle Scholar
  42. Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201CrossRefGoogle Scholar
  43. Peirano A, Damasso V, Montefalcone M, Morri C, Bianchi CN (2005a) Effects of climate, invasive species and anthropogenic impacts on the growth of the seagrass Posidonia oceanica (L.) Delile in Liguria (NW Mediterranean Sea). Mar Pollut Bull 50:817–822CrossRefPubMedGoogle Scholar
  44. Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005b) Monthly variations in calyx growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409CrossRefGoogle Scholar
  45. Potvin C, Roff DA (1993) Distribution-free and robust statistical methods: viable alternatives to parametric statistics? Ecology 74:1617–1628CrossRefGoogle Scholar
  46. Reynaud S, Leclercq N, Romaine-Liouds Ferrier-Pagès C, Jaubert J, Gattuso JP (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668CrossRefGoogle Scholar
  47. Rodolfo-Metalpa R, Richard C, Allemand D, Bianchi CN, Morri C, Ferrier-Pages C (2006) Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Mar Biol 150:45–55CrossRefGoogle Scholar
  48. Saiz E, Sabatés A, Gili JM (2014) The zooplankton. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer Science + Business Media BV, Dordrecht, pp 275–284Google Scholar
  49. Santangelo G, Bramanti L, Vielmini I, Iannelli M (2009) What we have learned about red coral and what we need to learn for its rational management. Proceedings of the First International Workshop on Corallium Science, Management, and Trade. NOAA Technical Memorandum NMFS-OPR-43 and CRCP-8, NOAA, Silver Spring, pp 71–86Google Scholar
  50. Shick JM, Lesser MP, Jokiel PL (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Glob Chang Biol 2:527–545CrossRefGoogle Scholar
  51. Sparre P, Ursin E, Siebren C Venema (1989) Introduction to tropical fish stock assessment. FAO Fisheries Technical Paper 306, FAO, RomeGoogle Scholar
  52. Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from Andaman Sea, south Thailand between 1984 and 2005. Coral Reefs 28:519–528CrossRefGoogle Scholar
  53. Teixido N, Garrabou J, Harmelin JG (2011) Low dynamics, high longevity and persistence of sessile structural species dwelling on Mediterranean coralligenous outcrops. PLoS One 6:e23744CrossRefPubMedPubMedCentralGoogle Scholar
  54. Visram S, Wiedenmann J, Douglas AE (2006) Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J Mar Biol Assoc UK 86:1281–1283CrossRefGoogle Scholar
  55. von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws II). Hum Biol 10:181–231Google Scholar
  56. Vongsavat V, Winotai P, Meejoo S (2006) Phase transitions of natural corals monitored by ESR spectroscopy. Nucl Instrum Methods Phys Res B 243:167–173CrossRefGoogle Scholar
  57. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  58. Zibrowius H (1980) Les scléractiniaires de la Méditeranée et de l’Atlantique nord-oriental. Mémoires de l’Institut océanographique, Monaco 11:1–284Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • E. Caroselli
    • 1
  • V. Brambilla
    • 1
  • F. Ricci
    • 1
  • G. Mattioli
    • 2
  • O. Levy
    • 3
  • G. Falini
    • 4
  • Z. Dubinsky
    • 3
  • S. Goffredo
    • 1
  1. 1.Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
  2. 2.Operative Unit of Radiology and Diagnostics by ImagesHospital of Porretta TermePorretta TermeItaly
  3. 3.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat GanIsrael
  4. 4.Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly

Personalised recommendations