Coral Reefs

, Volume 35, Issue 1, pp 273–284 | Cite as

The ups and downs of coral reef fishes: the genetic characteristics of a formerly severely overfished but currently recovering Nassau grouper fish spawning aggregation

  • A. M. Bernard
  • K. A. Feldheim
  • R. Nemeth
  • E. Kadison
  • J. Blondeau
  • B. X. Semmens
  • M. S. Shivji
Report

Abstract

The Nassau grouper (Epinephelus striatus) has sustained large declines across its distribution, including extirpation of many of its fish spawning aggregations (FSAs). Within US Virgin Islands (USVI) waters, Nassau grouper FSAs were overfished until their disappearance in the 1970s and 1980s. In the early 2000s, however, Nassau grouper were found gathering at Grammanik Bank, USVI, a mesophotic coral reef adjacent to one of the extinct aggregation sites, and regulatory protective measures were implemented to protect this fledgling FSA. The population genetic dynamics of this rapid FSA deterioration followed by protection-facilitated, incipient recovery are unknown. We addressed two objectives: (1) we explored which factors (i.e., local vs. external recruitment) might be key in shaping the USVI FSA recovery; and (2) we examined the consequences of severe past overfishing on this FSA’s current genetic status. We genotyped individuals (15 microsatellites) from the USVI FSA comprising three successive spawning years (2008–2010), as well as individuals from a much larger, presumably less impacted, Nassau grouper FSA in the Cayman Islands, to assess their comparative population dynamics. No population structure was detected between the USVI and Cayman FSAs (FST = −0.0004); however, a temporally waning, genetic bottleneck signal was detected in the USVI FSA. Parentage analysis failed to identify any parent–offspring matches between USVI FSA adults and nearby juveniles, and relatedness analysis showed low levels of genetic relatedness among USVI FSA individuals. Genetic diversity across USVI FSA temporal collections was relatively high, and no marked differences were found between the USVI and Cayman FSAs. These collective results suggest that external recruitment is an important driver of the USVI FSA recovery. Furthermore, despite an apparent genetic bottleneck, the genetic diversity of USVI Nassau grouper has not been severely compromised. Our findings also provide a baseline for future genetic monitoring of the nascent USVI aggregation.

Keywords

Nassau grouper Microsatellite Fish spawning aggregation Bottleneck Population recovery 

Supplementary material

338_2015_1370_MOESM1_ESM.jpg (80 kb)
Supplementary material 1 (JPEG 80 kb)
338_2015_1370_MOESM2_ESM.jpg (48 kb)
Supplementary material 2 (JPEG 48 kb)
338_2015_1370_MOESM3_ESM.jpg (24 kb)
Supplementary material 3 (JPEG 24 kb)
338_2015_1370_MOESM4_ESM.jpg (41 kb)
Supplementary material 4 (JPEG 40 kb)
338_2015_1370_MOESM5_ESM.jpg (43 kb)
Supplementary material 5 (JPEG 43 kb)
338_2015_1370_MOESM6_ESM.docx (38 kb)
Supplementary material 6 (DOCX 37 kb)
338_2015_1370_MOESM7_ESM.docx (20 kb)
Supplementary material 7 (DOCX 20 kb)

References

  1. Almany GR, Hamilton RJ, Bode M, Matawai M, Potuku T, Saenz-Agudelo P, Planes S, Berumen ML, Rhodes KL, Thorrold SR, Russ GR, Jones GP (2013) Dispersal of grouper larvae drives local resource sharing in a coral reef fishery. Curr Biol 23:626–630CrossRefPubMedGoogle Scholar
  2. Beets J, Friedlander AM (1992) Stock analysis and management strategies for red hind, Epinephelus guttatus, in the U.S. Virgin Islands. Proc Gulf Caribb Fish Inst 42:66–79Google Scholar
  3. Bernard AM, Feldheim KA, Richards VP, Nemeth RS, Shivji MS (2012) Development and characterization of fifteen novel microsatellite loci for the Nassau grouper (Epinephelus striatus) and their utility for cross-amplification on a suite of closely related species. Conserv Genet Resour 4:983–986CrossRefGoogle Scholar
  4. Bolden SK (2000) Long-distance movement of a Nassau grouper (Epinephelus striatus) to a spawning aggregation in the central Bahamas. Fish Bull 98:642–645Google Scholar
  5. Bouzat JL (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv Genet 11:463–478CrossRefGoogle Scholar
  6. Caplins SA, Gilbert KJ, Ciotir C, Roland J, Matter SF, Keyghobadi N (2014) Landscape structure and the genetic effects of a population collapse. Proc R Soc Lond B Biol Sci 281:20141798CrossRefGoogle Scholar
  7. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  8. Colin PL, Laroche WA, Brothers EB (1997) Ingress and settlement in the Nassau grouper, Epinephelus striatus (Pisces: Serranidae), with relationship to spawning occurrence. Bull Mar Sci 60:656–667Google Scholar
  9. Cornish A, Eklund A-M (2003) Epinephelus striatus. The IUCN red list of threatened species. Version 2014.1. http://www.iucnredlist.org/details/7862/0
  10. Cornuet J-M, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedCentralPubMedGoogle Scholar
  11. Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527CrossRefPubMedGoogle Scholar
  12. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839CrossRefPubMedGoogle Scholar
  13. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  14. Garza JC, Williamson EG (2001) Detection of reduction in the population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefPubMedGoogle Scholar
  15. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm
  16. Grüss A, Robinson J, Heppell SS, Heppell Scott A, Semmens SA, Semmens BX (2014) Conservation and fisheries effects of spawning aggregation marine protected areas: what we know, where we should go, and what we need to get there. ICES J Mar Sci 71:1515–1534CrossRefGoogle Scholar
  17. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372CrossRefPubMedGoogle Scholar
  18. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638CrossRefPubMedGoogle Scholar
  19. Heppell SA, Semmens BX, Archer SK, Pattengill-Semmens CV, Bush PG, McCoy CM, Heppell SS, Johnson BC (2012) Documenting recovery of a spawning aggregation through size frequency analysis from underwater laser calipers measurements. Biol Conserv 155:119–127CrossRefGoogle Scholar
  20. Heppell SA, Semmens BX, Pattengill-Semmens CV, Bush PG, Johnson BC, McCoy CM, Paris C, Gibb J, Heppell SS (2009) Tracking potential larval dispersal patterns from Nassau grouper aggregation sites: evidence for local retention and the “importance of place”. Proc Gulf Caribb Fish Inst 61:325–327Google Scholar
  21. Hoban SM, Gaggiotti OE, Bertorelle G (2013) The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation-based study. Mol Ecol 22:3444–3450CrossRefPubMedGoogle Scholar
  22. Holstein DM, Paris CB, Mumby PJ (2014) Consistency and inconsistency in multispecies population network dynamics of coral reef ecosystems. Mar Ecol Prog Ser 499:1–18CrossRefGoogle Scholar
  23. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedCentralCrossRefPubMedGoogle Scholar
  24. Jackson AM, Semmens BX, Sadovy de Mitcheson Y, Nemeth RS, Heppell SA, Bush PG, Aguilar-Perera A, Claydon JAB, Calosso MC, Sealey KS, Schärer MT, Bernardi G (2014) Population structure and phylogeography in Nassau grouper (Epinephelus striatus), a mass aggregating marine fish. PLoS One 9:e97508PubMedCentralCrossRefPubMedGoogle Scholar
  25. Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318CrossRefPubMedGoogle Scholar
  26. Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325CrossRefGoogle Scholar
  27. Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  28. Kadison E, Nemeth RS, Blondeau J, Smith T, Calnan J (2009) Nassau grouper (Epinephelus striatus) in St. Thomas, US Virgin Islands, with evidence for a spawning aggregation site recovery. Proc Gulf Caribb Fish Inst 62:273–273Google Scholar
  29. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accomodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106CrossRefPubMedGoogle Scholar
  30. Karnauskas M, Chérubin LM, Paris CB (2011) Adaptive significance of the formation of multi species fishing spawning aggregations near submerged capes. PLoS One 6:e22067PubMedCentralCrossRefPubMedGoogle Scholar
  31. Keller LF, Jeffery KJ, Arcese P, Beaumont AR, Hochachka WM, Smith JNM, Bruford MW (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc R Soc Lond B Biol Sci 268:1387–1394CrossRefGoogle Scholar
  32. Kobara S, Heyman WD, Pitt SJ, Nemeth RS (2013) Biogeography of transient reef-fish spawning aggregations in the Caribbean: a synthesis for future research and management. Oceanogr Mar Biol 51:281–326Google Scholar
  33. Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770CrossRefPubMedGoogle Scholar
  34. Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237CrossRefGoogle Scholar
  35. McEachern MB, Van Vuren DH, Floyd CH, May B, Eadie JM (2011) Bottlenecks and rescue effects in a fluctuating population of golden-mantled ground squirrels (Spermophilus lateralis). Conserv Genet 12:285–296CrossRefGoogle Scholar
  36. Meirmans PG, Hedrick PW (2011) Assessing population structure: F ST and related measures. Mol Ecol Resour 11:5–18CrossRefPubMedGoogle Scholar
  37. Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark-recapture data. Mol Ecol 14:1991–2005CrossRefPubMedGoogle Scholar
  38. Mora C (2008) A clear human footprint in the coral reefs of the Caribbean. Proc R Soc Lond B Biol Sci 275:767–773CrossRefGoogle Scholar
  39. Munro JL, Blok L (2003) The status of stocks of groupers and hinds in the Northeastern Caribbean. Proc Gulf Caribb Fish Inst 56:283–294Google Scholar
  40. Nemeth RS (2005) Population characteristics of a recovering US Virgin Islands red hind spawning aggregation following protection. Mar Ecol Prog Ser 286:81–97PubMedCentralCrossRefPubMedGoogle Scholar
  41. Nemeth RS, Kadison E, Herzlieb S, Blondeau J, Whiteman EA (2006) Status of yellowfin (Mycteroperca venenosa) grouper spawning aggregating in the US Virgin Islands with notes on other species. Proc Gulf Caribb Fish Inst 57:543–558Google Scholar
  42. National Oceanic and Atmospheric Administration (NOAA) (2014) NOAA fisheries protected resources: Nassau grouper (Epinephelus striatus) http://www.fisheries.noaa.gov/pr/species/fish/nassau-grouper.html
  43. Olsen DA, LaPlace JA (1979) A study of a Virgin Islands grouper fishery based on a breeding aggregation. Proc Gulf Caribb Fish Inst 31:130–144Google Scholar
  44. Paddack MJ, Reynolds JD, Aguilar C, Appeldoorn RS, Beets J, Burkett EW, Chittaro PM, Clarke K, Esteves R, Fonseca AC, Forrester GE, Friedlander AM, García-Sais J, González-Sansón G, Jordan LKB, McClellan DB, WMiller MW, Molloy PP, Mumby PJ, Nagelkerken I, Nemeth M, Navas-Camacho R, Pitt J, Polunin NVC, Reyes-Nivia MC, Robertson DR, Rodríguez-Ramírez A, Salas E, Smith SR, Spieler RE, Steele MA, Williams ID, Wormald CL, Watkinson AR, Côté IM (2009) Recent region-wide declines in Caribbean reef fish abundance. Curr Biol 19:590–595CrossRefPubMedGoogle Scholar
  45. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958CrossRefPubMedGoogle Scholar
  46. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  47. Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418CrossRefPubMedGoogle Scholar
  48. Pinksy ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39CrossRefGoogle Scholar
  49. Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frquency data. J Hered 90:502–503CrossRefGoogle Scholar
  50. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  51. Puebla O, Bermingham E, McMillan WO (2012) On the spatial scale of dispersal in coral reef fishes. Mol Ecol 21:5675–5688CrossRefPubMedGoogle Scholar
  52. Queller DC, Goodnight KF (1989) Relatedness using genetic markers. Evolution 43:258–275CrossRefGoogle Scholar
  53. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  54. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  55. Riginos C, Liggins L (2013) Seascape genetics: populations, individuals, and genes marooned and adrift. Geogr Compass 7:197–216CrossRefGoogle Scholar
  56. Roberts CM (1995) Effects of fishing on the ecosystem structure of coral reefs. Conserv Biol 9:988–995CrossRefGoogle Scholar
  57. Rousset F (2008) GENEPOP ‘007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  58. Rousset F, Raymond M (1995) Testing hertozygote excess and deficiency. Genetics 140:1413–1419PubMedCentralPubMedGoogle Scholar
  59. Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Resour 6:600–602Google Scholar
  60. Sadovy Y (1999) The case of the disappearing grouper: Epinephelus striatus, the Nassau grouper, in the Caribbean and western Atlantic. Proc Gulf Caribb Fish Inst 45:5–22Google Scholar
  61. Sadovy Y, Colin PL (1995) Sexual development and sexuality in the Nassau grouper, Epinephelus striatus (Pisces: Serranidae). J Fish Biol 46:961–976CrossRefGoogle Scholar
  62. Sadovy Y, Eklund A-M (1999) Synopsis of biological data on the Nassau grouper, Epinephelus striatus (Bloch, 1792), and the Jewfish, E. itajara (Lichtenstein, 1822). NOAA technical report NMFS 146. US Department of Commerce, Seattle, WAGoogle Scholar
  63. Sadovy de Mitcheson Y, Cornish A, Domeier M, Colin PL, Russell M, Lindeman KC (2008) A global baseline for spawning aggregations of reef fishes. Conserv Biol 22:1233–1244CrossRefPubMedGoogle Scholar
  64. Schärer-Umpierre M, Nemeth R, Tuohy E, Clouse K, Nemeth M, Appeldoorn RS (2014) Nassau grouper Epinephelus striatus fish spawning aggregations in the US Caribbean. Proc Gulf Caribb Fish Inst 66:408–412Google Scholar
  65. Selkoe KA, Gaggiotti OE, Bowen BW, Toonen RJ (2014) Emergent patterns of population genetic structure for a coral reef community. Mol Ecol 23:3064–3079CrossRefPubMedGoogle Scholar
  66. Semmens BX, Luke K, Bush PG, Pattengil-Semmens C, Johnson B, McCoy C, Heppell S (2007) Investigating the reproductive migration and spatial ecology of Nassau grouper (Epinephelus striatus) on Little Cayman Island using acoustic tags—an overview. Proc Gulf Caribb Fish Inst 58:199–206Google Scholar
  67. Smith CL (1972) A spawning aggregation of Nassau grouper, Epinephelus striatus (Bloch). T Am Fish Soc 2:257–261CrossRefGoogle Scholar
  68. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256CrossRefPubMedGoogle Scholar
  69. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  70. Whaylen L, Pattengill-Semmens C-V, Semmens BX, Bush PG, Boardman MR (2004) Observations of a Nassau grouper, Epinephelus striatus, spawning aggregation site in Little Cayman, Cayman Islands, including multi-species spawning information. Environ Biol Fishes 70:305–313CrossRefGoogle Scholar
  71. Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatetllite loci. Conserv Genet 6:551–562CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. M. Bernard
    • 1
  • K. A. Feldheim
    • 2
  • R. Nemeth
    • 3
  • E. Kadison
    • 3
  • J. Blondeau
    • 3
  • B. X. Semmens
    • 4
    • 5
  • M. S. Shivji
    • 1
  1. 1.The National Coral Reef Institute and Guy Harvey Research Institute, Oceanographic CenterNova Southeastern UniversityDania BeachUSA
  2. 2.Pritzker Laboratory for Molecular Systematics and EvolutionField MuseumChicagoUSA
  3. 3.Center for Marine and Environmental StudiesUniversity of the Virgin IslandsSt. ThomasUS Virgin Islands, USA
  4. 4.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  5. 5.Reef Environmental Education Foundation (REEF)Key LargoUSA

Personalised recommendations