Coral Reefs

, Volume 34, Issue 3, pp 927–939 | Cite as

Genetic diversity of free-living Symbiodinium in the Caribbean: the importance of habitats and seasons

  • Camila Granados-Cifuentes
  • Joseph Neigel
  • Paul Leberg
  • Mauricio Rodriguez-Lanetty


Although reef corals are dependent of the dinoflagellate Symbiodinium, the large majority of corals spawn gametes that do not contain their vital symbiont. This suggests the existence of a pool of Symbiodinium in the environment, of which surprisingly little is known. Reefs around Curaçao (Caribbean) were sampled for free-living Symbiodinium at three time periods (summer 2009, summer 2010, and winter 2010) to characterize different habitats (water column, coral rubble, sediment, the macroalgae Halimeda spp., Dictyota spp., and Lobophora variegata, and the seagrass Thalassia testudinum) that could serve as environmental sources of symbionts for corals. We detected the common clades of Symbiodinium that engage in symbiosis with Caribbean coral hosts A, B, and C using Symbiodinium-specific primers of the hypervariable region of the chloroplast 23S ribosomal DNA gene. We also discovered clade G and, for the first time in the Caribbean, the presence of free-living Symbiodinium clades F and H. Additionally, this study expands the habitat range of free-living Symbiodinium as environmental Symbiodinium was detected in T. testudinum seagrass beds. The patterns of association between free-living Symbiodinium types and habitats were shown to be complex. An interesting, strong association was seen between some clade A sequence types and sediment, suggesting that sediment could be a niche where clade A radiated from a free-living ancestor. Other interesting relationships were seen between sequence types of Symbiodinium clade C with Halimeda spp. and clades B and F with T. testudinium. These relationships highlight the importance of some macroalgae and seagrasses in hosting free-living Symbiodinium. Finally, studies spanning beyond a 1-yr cycle are needed to further expand on our results in order to better understand the variation of Symbiodinium in the environment through time. All together, results presented here showed that the great diversity of free-living Symbiodinium has a dynamic distribution across habitats and time.


Free-living Symbiodinium cpr23S-HVR Thalassia testudinum Coral reefs Macroalgae Log-linear modeling analysis 



We would like to thank Dr. Mark Vermeij and Mr. Nelson Manrique for their assistance in Curacao and Mr. Venkatesh M Thirumal, Ms. Meagan D Bahlinger, Ms. Lisa Sherrif, and Mr. Jesse Soleau for their assistance in the laboratory. We would also like to thank Dr. Anthony J. Bellantuono, Ms. Tanya Brown, Ms. Ariane Martin, other members of IMaGeS Lab, and two anonymous reviewers for reviewing previous drafts of this manuscript. This research was funded by a PADI Grant awarded to CGC and an NSF-OCE Grant (0851123) awarded to MRL.

Supplementary material

338_2015_1291_MOESM1_ESM.doc (436 kb)
Supplementary material 1 (DOC 436 kb)


  1. Adams LM, Cumbo VR, Takabayashi M (2009) Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Mar Ecol Prog Ser 377:149–156CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  3. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  4. Baker AC, Rowan R (1997) Diversity of symbiotic dinoflagellates (zooxanthellae) in scleractinian corals of the Caribbean and eastern Pacific. In: Proc 8th Int Coral Reef Symp 2:1301–1306Google Scholar
  5. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a nugget of hope for coral reefs in an era of climate change. Proc R Soc B Biol Sci 273:2305–2312CrossRefGoogle Scholar
  6. Bouimetarhan I, Marret F, Dupont L, Zonneveld K (2009) Dinoflagellate cyst distribution in marine surface sediments off West Africa (17-6 degrees N) in relation to sea-surface conditions, freshwater input and seasonal coastal upwelling. Mar Micropaleontol 71:113–130CrossRefGoogle Scholar
  7. Brandt K (1881) Über das Zusammenleben von Thieren und Algen. Verh Physiol Ges 1881–1882:22–26Google Scholar
  8. Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062CrossRefGoogle Scholar
  9. Castrana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefGoogle Scholar
  10. Chang FH (1983) Winter phytoplankton and microzooplankton populations off the coast of Westland, New Zealand, 1979. N Z J Mar Freshw Res 17:279–304CrossRefGoogle Scholar
  11. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34PubMedCrossRefGoogle Scholar
  12. Coffroth MA, Lewis CF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16:R985–R987PubMedCrossRefGoogle Scholar
  13. Correa AMS, McDonald MD, Baker AC (2009) Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol 156:2403–2411CrossRefGoogle Scholar
  14. D’Costa PM, Anil AC, Patil JS, Hegde S, D’Silva MS, Chourasia M (2008) Dinoflagellates in a mesotrophic, tropical environment influenced by monsoon. Estuar Coast Shelf Sci 77:77–90CrossRefGoogle Scholar
  15. Everitt B, Landau S, Leese M (2001) Cluster Analysis. Arnold, LondonGoogle Scholar
  16. Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD (2012) GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium–host symbioses. Mol Ecol Resour 12:369–373PubMedCrossRefGoogle Scholar
  17. Freudenthal H (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle and morphology. J Protozool 9:45–52CrossRefGoogle Scholar
  18. Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960PubMedCrossRefGoogle Scholar
  19. Gou WL, Sun J, Li XQ, Zhen Y, Xin ZY, Yu ZG, Li RX (2003) Phylogenetic analysis of a free-living strain of Symbiodinium isolated from Jiaozhou Bay, PR China. J Exp Mar Biol Ecol 296:135–144CrossRefGoogle Scholar
  20. Granados C, Camargo C, Zea S, Sanchez JA (2008) Phylogenetic relationships among zooxanthellae (Symbiodinium) associated to excavating sponges (Cliona spp.) reveal an unexpected lineage in the Caribbean. Mol Phylogenet Evol 49:554–560PubMedCrossRefGoogle Scholar
  21. Green EA, Davies SW, Matz MV, Medina M (2014) Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico. Peer J 2:e386PubMedCentralPubMedCrossRefGoogle Scholar
  22. Haas AF, Naumann MS, Struck U, Mayr C, el-Zibdah M, Wild C (2010) Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J Exp Mar Biol Ecol 389:53–60CrossRefGoogle Scholar
  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  24. Hansen G, Daugbjerg N (2009) Symbiodinium natans sp. nov.: a “free-living” dinoflagellate from Tenerife (northeast Atlantic ocean). J Phycol 45:251–263CrossRefGoogle Scholar
  25. Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition, pp 59–85Google Scholar
  26. Harrison P, Babcock RC, Bull GD, Oliver JK, Wallace CC, Willis BL (1984) Mass spawning on tropical reef corals. Science 223:1186–1189PubMedCrossRefGoogle Scholar
  27. Hill M, Allenby A, Ramsby B, Schoenberg C, Hill A (2011) Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: Evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol 59:81–88PubMedCrossRefGoogle Scholar
  28. Hirose M, Reimer JD, Hidaka M, Suda S (2008) Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa, Japan. Mar Biol 155:105–112CrossRefGoogle Scholar
  29. Hitchcock GL, Fourqurean JW, Drake JL, Mead RN, Heil CA (2012) Brevetoxin persistence in sediments and seagrass epiphytes of east Florida coastal waters. Harmful Algae 13:89–94PubMedCentralPubMedCrossRefGoogle Scholar
  30. Huang H, Zhou G, Yang J, Liu S, You F, Lei X (2013) Diversity of free-living and symbiotic Symbiodinium in the coral reefs of Sanya, South China Sea. Mar Biol Res 9:117–128CrossRefGoogle Scholar
  31. Jeong HJ, Lim AS, Yoo YD, Lee MJ, Lee KH, Jang TY, Lee K (2014) Feeding by the heterotrophic dinoflagellate and ciliates on the free-living dinoflagellate Symbiodinium sp. (Clade E). J Eukaryot Microbiol 61:27–41PubMedCrossRefGoogle Scholar
  32. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc B Biol Sci 275:1359–1365CrossRefGoogle Scholar
  33. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298PubMedCrossRefGoogle Scholar
  34. Koike K, Yamashita H, Oh-Uchi A, Tamaki M, Hayashibara T (2007) A quantitative real-time PCR method for monitoring Symbiodinium in the water column. Galaxea JCRS 9:1–12CrossRefGoogle Scholar
  35. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: In search of a “species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  36. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  37. LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene–Pliocene transition. Mol Biol Evol 22:570–581PubMedCrossRefGoogle Scholar
  38. LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603Google Scholar
  39. Lewis CL, Coffroth MA (2004) The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science 304:1490–1492PubMedCrossRefGoogle Scholar
  40. Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53CrossRefGoogle Scholar
  41. Loeblich AR, Sherley JL (1979) Observations on the theca of the motile phase of free-living and symbiotic isolates of Zooxanthella microadriatica (Freudenthal) comb. nov. J Mar Biol Assoc UK 59:195–205CrossRefGoogle Scholar
  42. Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.75
  43. Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861CrossRefGoogle Scholar
  44. Marasigan AN, Tamse AF, Fukuyo Y (2001) Prorocentrum (Prorocentrales: Dinophyceae) populations on seagrass-blade surface in Taklong Island, Guimaras Province, Philippines. Plankton Biol Ecol 48:79–84Google Scholar
  45. Miller MA, Pfeiffer W, Schwarz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. GCE New Orleans, LA, pp 1–8Google Scholar
  46. Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorialGoogle Scholar
  47. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan: Community Ecology PackageGoogle Scholar
  48. Parson ML, Preskitt LB (2007) A survey of epiphytic dinoflagellates from the coastal waters of the island of Hawai’i. Harmful Algae 6:658–669CrossRefGoogle Scholar
  49. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497PubMedCrossRefGoogle Scholar
  50. Pochon XP, Pawlowski JP, Zaninetti LZ, Rowan RR (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078CrossRefGoogle Scholar
  51. Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30PubMedCrossRefGoogle Scholar
  52. Pochon X, Stat M, Takabayashi M, Chasqui L, Chauka LJ, Logan DDK, Gates RD (2010) Comparison of endosymbiotic and free-living Symbiodinium (Dinophyceae) diversity in a Hawaiian reef environment. J Phycol 46:53–65CrossRefGoogle Scholar
  53. Porto I, Granados C, Restrepo JC, Sanchez JA (2008) Macroalgal-associated dinoflagellates belonging to the genus Symbiodinium in Caribbean reefs. PLoS One 3:e2160PubMedCentralPubMedCrossRefGoogle Scholar
  54. R Development Core Team (2009) R: A language and environment for statistical computing R Foundation for Statistical Computing. Austria, ViennaGoogle Scholar
  55. Reimer JD, Shah MMR, Sinniger F, Yanagi K, Suda S (2010) Preliminary analyses of cultured Symbiodinium isolated from sand in the oceanic Ogasawara Islands, Japan. Mar Biodivers 40:237–247CrossRefGoogle Scholar
  56. Reynolds JMC, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci USA 105(36):13674–13678PubMedCentralPubMedCrossRefGoogle Scholar
  57. Rhodes L (2011) World-wide occurrence of the toxic dinoflagellate genus Ostreopsis Schmidt. Toxicon 57:400–407PubMedCrossRefGoogle Scholar
  58. Ripley R (2011) MASS: support functions and datasets for Venables and Ripley’s MASSGoogle Scholar
  59. Rodriguez EA, Mancera Pineda JE, Gavio B (2010) Survey of benthic dinoflagellates associated to beds of Thalassia testudinium in San Andres Island, Seaflower Biosphere Reserve, Caribbean Colombia. Acta Biolo Colomb 15:229–246Google Scholar
  60. Rodriguez-Lanetty M (2003) Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA. Mol Phylogenet Evol 28:152–168PubMedCrossRefGoogle Scholar
  61. Rodriguez-Lanetty M, Cha H, Song J (2002) Genetic diversity of symbiotic dinoflagellates associated with anthozoans from Korean waters. In: Proc 9th Int Coral Reef Symp 1:163–166Google Scholar
  62. Santos SR, LaJeunesse TC (2006) Searchable database of Symbiodinium diversity—geographic and ecological diversity (SD2-GED). Available via Auburn University
  63. Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: Implications for extrapolating to the intact symbiosis. J Phycol 37:900–912CrossRefGoogle Scholar
  64. Santos SR, Gutierrez-Rodriguez C, Coffroth MA (2003) Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S)-ribosomal DNA sequences. Mar Biotechnol 5:130–140PubMedGoogle Scholar
  65. Schonberg CHL, Loh WKW (2005) Molecular identity of the unique symbiotic dinoflagellates found in the bioeroding demosponge Cliona orientalis. Mar Ecol Prog Ser 299:157–166CrossRefGoogle Scholar
  66. Selina M, Levchenko E (2011) Species composition and morphology of dinoflagellates (Dinophyta) of epiphytic assemblages of Peter the Great Bay in the Sea of Japan. Russ J Mar Biol 37:23–32CrossRefGoogle Scholar
  67. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New YorkGoogle Scholar
  68. Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313PubMedCentralPubMedCrossRefGoogle Scholar
  69. Takabayashi M, Adams LM, Pochon X, Gates RD (2012) Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai’i and Florida. Coral Reefs 31:157–167CrossRefGoogle Scholar
  70. Thornhill DJ, Daniel MW, LaJeunesse TC, Schmidt GW, Fitt WK (2006) Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J Exp Mar Biol Ecol 338:50–56CrossRefGoogle Scholar
  71. Venera-Ponton DE, Diaz-Pulido G, Rodriguez-Lanetty M, Hoegh-Guldberg O (2010) Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef. Coral Reefs 29:1049–1060CrossRefGoogle Scholar
  72. Vidal R, Meneses I, Smith M (2002) Enhanced DNA extraction and PCR amplification of SSU ribosomal genes from crustose coralline algae. J Appl Phycol 14:223–227CrossRefGoogle Scholar
  73. Villanoy CL, Azanza RV, Alternerano A, Casil AL (2006) Attempts to model the bloom dynamics of Pyrodinium, a tropical toxic dinoflagellate. Harmful Algae 5:156–183CrossRefGoogle Scholar
  74. Yamashita H, Koike K (2013) Genetic identity of free-living Symbiodinium obtained over a broad latitudinal range in the Japanese coast. Phycol Res 61:68–80CrossRefGoogle Scholar
  75. Yost DM, Mitchelmore CL (2010) Determination of total and particulate dimethylsulfoniopropionate (DMSP) concentrations in four scleractinian coral species: a comparison of methods. J Exp Mar Biol Ecol 395:72–79CrossRefGoogle Scholar
  76. Zhou G, Huang H, Yu Z, Dong Z, Li Y (2012) Genetic diversity of potentially free-living Symbiodinium in the Xisha Islands, South China Sea: Implications for the resilience of coral reefs. Aquat Ecosyst Health Manag 15:152–160Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Camila Granados-Cifuentes
    • 2
    • 3
  • Joseph Neigel
    • 2
  • Paul Leberg
    • 2
  • Mauricio Rodriguez-Lanetty
    • 1
  1. 1.Department of Biological SciencesFlorida International UniversityMiamiUSA
  2. 2.Department of BiologyUniversity of Louisiana at LafayetteLafayetteUSA
  3. 3.Department of Natural Sciences, Baruch CollegeCity University of New YorkNew YorkUSA

Personalised recommendations