Coral Reefs

, Volume 34, Issue 2, pp 519–531 | Cite as

Widespread prevalence of cryptic Symbiodinium D in the key Caribbean reef builder, Orbicella annularis

  • Emma V. KennedyEmail author
  • Nicola L. Foster
  • Peter J. Mumby
  • Jamie R. StevensEmail author


Symbiodinium D, a relatively rare clade of algal endosymbiont with a global distribution, has attracted interest as some of its sub-cladal types induce increased thermal tolerance and associated trade-offs, including reduced growth rate in its coral hosts. Members of Symbiodinium D are increasingly reported to comprise low-abundance ‘cryptic’ (<10 %) proportions of mixed coral endosymbiont communities, with unknown ecological implications. Real-time PCR (RT-PCR) targeted to specific types is sufficiently sensitive to detect these background symbiont levels. In this study, RT-PCR was employed to screen 552 colonies of the key Caribbean reef builder Orbicella annularis sampled across a 5.4 million km2 range for the presence of cryptic Symbiodinium ‘D1’ (i.e., the principal Caribbean ITS2 variants, D1 and D1–4). All but one out of 33 populations analysed were shown to host low abundances of Symbiodinium D1, with an average of >30 % of corals per site found to harbour the symbiont. When the same samples were analysed using the conventional screening technique, denaturing gradient gel electrophoresis, Symbiodinium D1 was only detected in 12 populations and appeared to be hosted by <12 % of colonies where present (in agreement with other reported low prevalence/absences in O. annularis). Cryptic Symbiodinium D1 showed a mainly uniform distribution across the wider Caribbean region, although significantly more Mesoamerican Barrier Reef corals hosted cryptic Symbiodinium D1 than might be expected by chance, possibly as a consequence of intense warming in the region in 1998. Widespread prevalence of thermally tolerant Symbiodinium in O. annularis may potentially reflect a capacity for the coral to temporarily respond to warming events through symbiont shuffling. However, association with reduced coral calcification means that the ubiquitous nature of Symbiodinium D1 in O. annularis populations is unlikely to prevent long-term declines in reef health, at a time when maintaining reef growth is vital to sustain reef ecosystem function.


Zooxanthellae Coral bleaching Clade D RT-PCR Climate change Montastraea 



This project was funded primarily by the European Union FP7 project Future of Reefs in a Changing Environment (FORCE) under Grant Agreement No. 244161 (EVK, JRS and PJM), and a University of Exeter studentship (EVK) with additional support from the Great Barrier Reef Foundation (EVK). We thank L. Tonk for DGGE training and for invaluable edits on the manuscript. Additionally, we are grateful to P. Hamilton, R. A. King, A. Griffiths, and A. Lange for guidance with HRM analyses, and J. C. Ortiz for feedback on the manuscript. Finally, we would like to thank topic editor S. Davy along with X. Pochon and a second anonymous reviewer for their constructive comments.

Supplementary material

338_2015_1264_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20CrossRefPubMedGoogle Scholar
  2. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  3. Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741CrossRefPubMedGoogle Scholar
  4. Baker DM, Weigt L, Fogel M, Knowlton N (2013) Ancient DNA from coral-hosted Symbiodinium reveal a static mutualism over the last 172 years. PLoS One 8:e55057CrossRefPubMedCentralPubMedGoogle Scholar
  5. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312CrossRefGoogle Scholar
  6. Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138CrossRefGoogle Scholar
  7. Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529CrossRefGoogle Scholar
  8. Coleman AW, Suarez AS, Goff LJ (1994) Molecular delineation of species and syngens in volvocacean green algae (Chlorophyta). J Phycol 30:80–90CrossRefGoogle Scholar
  9. Correa A, McDonald M, Baker A (2009a) Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol 156:2403–2411CrossRefGoogle Scholar
  10. Correa AMS, Brandt ME, Smith TB, Thornhill DJ, Baker AC (2009b) Symbiodinium associations with diseased and healthy scleractinian corals. Coral Reefs 28:437–448CrossRefGoogle Scholar
  11. Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brandt M, Bruckner AW, Bunkley-Williams L, Cameron A, Causey BD, Chiappone M, Christensen TRL, Crabbe MJC, Day O, de la Guardia E, Diaz-Pulido G, DiResta D, Gil-Agudelo DL, Gilliam DS, Ginsburg RN, Gore S, Guzman HM, Hendee JC, Hernandez-Delgado EA, Husain E, Jeffrey CFG, Jones RJ, Jordan-Dahlgren E, Kaufman LS, Kline DI, Kramer PA, Lang JC, Lirman D, Mallela J, Manfrino C, Marechal J-P, Marks K, Mihaly J, Miller WJ, Mueller EM, Muller EM, Orozco Toro CA, Oxenford HA, Ponce-Taylor D, Quinn N, Ritchie KB, Rodriguez S, Ramirez AR, Romano S, Samhouri JF, Sanchez JA, Schmahl GP, Shank BV, Skirving WJ, Steiner SCC, Villamizar E, Walsh SM, Walter C, Weil E, Williams EH, Roberson KW, Yusuf Y (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5:e13969CrossRefPubMedCentralPubMedGoogle Scholar
  12. Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJ (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458CrossRefPubMedGoogle Scholar
  13. Fagoonee I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: a long-term study in the field. Science 283:843–845CrossRefPubMedGoogle Scholar
  14. Finney J, Pettay D, Sampayo E, Warner M, Oxenford H, LaJeunesse T (2010) The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263CrossRefPubMedGoogle Scholar
  15. Foster NL (2007) Population dynamics of the dominant Caribbean reef-building coral, Montastraea annularis. Ph.D. thesis, University of Exeter, p 275Google Scholar
  16. Foster NL, Paris CB, Kool JT, Baums IB, Stevens JR, Sanchez JA, Bastidas C, Agudelo C, Bush P, Day O, Ferrari R, Gonzalez P, Gore S, Guppy R, McCartney MA, McCoy C, Mendes J, Srinivasan A, Steiner S, Vermeij MJA, Weil E, Mumby PJ (2012) Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol Ecol 21:1143–1157CrossRefPubMedGoogle Scholar
  17. Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K, Donner SD, Hoegh-Guldberg O (2013) Limiting global warming to 2°C is unlikely to save most coral reefs. Nat Clim Chang 3:165–170CrossRefGoogle Scholar
  18. Garren M, Walsh S, Caccone A, Knowlton N (2006) Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25:503–512CrossRefGoogle Scholar
  19. Granados-Cifuentes C, Rodriguez-Lanetty M (2011) The use of high-resolution melting analysis for genotyping Symbiodinium strains: a sensitive and fast approach. Mol Ecol Res 11:394–399CrossRefGoogle Scholar
  20. Heath KD, Stinchcombe JR (2013) Explaining mutualism variation: a new evolutionary paradox? Evolution 68:309–317CrossRefPubMedGoogle Scholar
  21. Jones AM, Berkelmans R (2010) Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS One 5:e10437CrossRefPubMedCentralPubMedGoogle Scholar
  22. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc Natl Acad Sci 275:1359–1365Google Scholar
  23. Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schoenberg CHL, Wisshak M, Form AU, Carricart-Ganivet JP, Fine M, Eakion CM, Mumby PJ (2013) Avoiding reef functional collapse requires local and global action. Curr Biol 23:912–918CrossRefPubMedGoogle Scholar
  24. Knowlton N, Weil E, Weigt LA, Guzman HM (1992) Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science 255:330–333CrossRefPubMedGoogle Scholar
  25. Kramer PA, Kramer PR, Arias-Gonzalez E, McField M (2000) Staus of coral reefs of Northern Central America: Mexico, Belize, Guatemala, Honduras, Nicaragua and El Salvador. In: Wilkinson C (ed) Status of coral reefs of the world. Australian Institute of Marine Science, Cape Ferguson, Queensland and Dampier, WA, pp 287–313Google Scholar
  26. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  27. LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134CrossRefPubMedGoogle Scholar
  28. LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc Lond B Biol Sci 276:4139–4148CrossRefGoogle Scholar
  29. LaJeunesse TC, Bonilla HR, Warner ME, Wills M, Schmidt GW, Fitt WK (2008) Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr 53:719–727CrossRefGoogle Scholar
  30. LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53:305–319CrossRefGoogle Scholar
  31. LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010a) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeography 37:785–800CrossRefGoogle Scholar
  32. LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Perez AL, Reyes-Bonilla H, Warner ME (2010b) Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc Lond B Biol Sci 277:2925–02934CrossRefGoogle Scholar
  33. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494CrossRefPubMedGoogle Scholar
  34. Littman RA, Bourne DG, Willis BL (2010) Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol Ecol 19:1978–1990CrossRefPubMedGoogle Scholar
  35. Loram JE, Boonham N, O’Toole P, Trapido-Rosenthal HG, Douglas AE (2007) Molecular quantification of symbiotic dinoflagellate algae of the genus Symbiodinium. Biol Bull 212:259–268CrossRefPubMedGoogle Scholar
  36. Manzello DP, Berkelmans R, Hendee JC (2007) Coral bleaching indices and thresholds for the Florida Reef Tract, Bahamas, and St. Croix. US Virgin Islands. Mar Pollut Bull 54:1923–1931CrossRefGoogle Scholar
  37. McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012) Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Prog Ser 462:1–7CrossRefGoogle Scholar
  38. Mieog JC, Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457CrossRefGoogle Scholar
  39. Mumby PJ, Broad K, Brumbaugh DR, Dahlgren C, Harborne AR, Hastings A, Holmes KE, Kappel CV, Micheli F, Sanchirico JN (2008) Coral reef habitats as surrogates of species, ecological functions, and ecosystem services. Conserv Biol 22:941–951CrossRefPubMedGoogle Scholar
  40. Oliver TA, Palumbi SR (2011) Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30:241–250CrossRefGoogle Scholar
  41. Ortiz JC, González-Rivero M, Mumby PJ (2013) Can a thermally tolerant symbiont improve the future of Caribbean coral reefs? Glob Chang Biol 19:273–281CrossRefPubMedGoogle Scholar
  42. Ortiz JC, González-Rivero M, Mumby PJ (2014) An ecosystem-level perspective on the host and symbiont traits needed to mitigate climate change impacts on Caribbean coral reefs. Ecosystems 17:1–13CrossRefGoogle Scholar
  43. Perry JN (1995) Spatial analysis by distance indices. J Anim Ecol 64:303–314CrossRefGoogle Scholar
  44. Perry JN, Winder L, Holland JM, Alston RD (1999) Red–blue plots for detecting clusters in count data. Ecol Lett 2:106–113CrossRefGoogle Scholar
  45. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Mol Phylogenet Evol 56:492–497CrossRefPubMedGoogle Scholar
  46. Pochon X, Putnam HM, Gates RD (2014) Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ 2:e394CrossRefPubMedCentralPubMedGoogle Scholar
  47. Putnam HM, Stat M, Pochon X, Gates RD (2012) Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc Lond B Biol Sci 279:4352–4361CrossRefGoogle Scholar
  48. Roff G, Mumby PJ (2012) Global disparity in the resilience of coral reefs. Trends Ecol Evol 27:404–413CrossRefPubMedGoogle Scholar
  49. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci 92:2850–2853CrossRefPubMedCentralPubMedGoogle Scholar
  50. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269CrossRefPubMedGoogle Scholar
  51. Sampayo EM, Dove S, Lajeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519CrossRefPubMedGoogle Scholar
  52. Silverstein RN, Correa AMS, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc Lond B Biol Sci 279:2609–2618CrossRefGoogle Scholar
  53. Smith RT (2008) Specificity, stability and comparative physiology of coral-Symbiodinium mutualisms: Evaluating the potential for acclimation and/or adaptation in reef corals. Ph.D. Thesis, Florida International University, p 105Google Scholar
  54. Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a nugget of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar BiolGoogle Scholar
  55. Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci 105:9256–9261CrossRefPubMedCentralPubMedGoogle Scholar
  56. Stat M, Baker AC, Bourne DG, Correa AMS, Forsman Z, Huggett MJ, Pochon X, Skillings D, Toonen RJ, van Oppen MJH, Gates RD (2012) Molecular delineation of species in the coral holobiont. Adv Mar Biol 63:1–65CrossRefPubMedGoogle Scholar
  57. Szmant AM (1991) Sexual reproduction by the Caribbean reef corals Montastraea annularis and M. cavernosa. Mar Ecol Prog Ser 74:13–25CrossRefGoogle Scholar
  58. Thornhill D, Fitt W, Schmidt G (2006a) Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 25:515–519CrossRefGoogle Scholar
  59. Thornhill DJ, Xiang Y, Fitt WK, Santos SR (2009) Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS One 4:e6262CrossRefPubMedCentralPubMedGoogle Scholar
  60. Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006b) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722CrossRefGoogle Scholar
  61. Toller WW, Rowan R, Knowlton N (2001a) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359CrossRefPubMedGoogle Scholar
  62. Toller WW, Rowan R, Knowlton N (2001b) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373CrossRefPubMedGoogle Scholar
  63. van Hooidonk RJ, Manzello DP, Moye J, Brandt ME, Hendee JC, McCoy C, Manfrino C (2012) Coral bleaching at Little Cayman, Cayman Islands 2009. Estuar Coast Shelf Sci 106:80–84CrossRefGoogle Scholar
  64. Wang J-T, Meng P-J, Chen Y-Y, Chen CA (2012) Determination of the thermal tolerance of Symbiodinium using the activation energy for inhibiting photosystem II activity. Zool Stud 51:137–142Google Scholar
  65. Warner ME, LaJeunesse TC, Robison JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching. Limnol Oceanogr 51:1887–1897CrossRefGoogle Scholar
  66. Wooldridge SA (2014) Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host. Coral Reefs 33:15–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
  2. 2.Australian Rivers InstituteGriffith UniversityNathanAustralia
  3. 3.School of Marine Science and EngineeringPlymouth UniversityPlymouthUK
  4. 4.Marine Spatial Ecology Lab, School of Biological SciencesUniversity of QueenslandSaint LuciaAustralia

Personalised recommendations