Skip to main content
Log in

Do tabular corals constitute keystone structures for fishes on coral reefs?

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals (Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237

    Article  Google Scholar 

  • Almany G (2004) Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141:105–113

    Article  PubMed  Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc B: Biol Sci 276:3019–3025

    Article  Google Scholar 

  • Appeldoorn R, Aguilar-Perera A, Bouwmeester B, Dennis G, Hill R, Merten W, Recksiek C, Williams S (2009) Movement of fishes (Grunts: Haemulidae) across the coral reef seascape: A review of scales, patterns and processes. Caribb J Sci 45:304–316

    Google Scholar 

  • Baird AH, Hughes TP (2000) Competitive dominance by tabular corals: an experimental analysis of recruitment and survival of understorey assemblages. J Exp Mar Biol Ecol 251:117–132

    Article  PubMed  Google Scholar 

  • Baird AH, Pratchett MS, Hoey AS, Herdiana Y, Campbell SJ (2013) Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs 32:803–812

    Article  Google Scholar 

  • Beck MW (2000) Separating the elements of habitat structure: independent effects of habitat complexity and structural components on rocky intertidal gastropods. J Exp Mar Biol Ecol 249:29–49

    Article  PubMed  Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285

    Article  Google Scholar 

  • Beukers-Stewart BD, Jones GP (2004) The influence of prey abundance on the feeding ecology of two piscivorous species of coral reef fish. J Exp Mar Biol Ecol 299:155–184

    Article  Google Scholar 

  • Bonin MC (2012) Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss. Coral Reefs 31:287–297

    Article  Google Scholar 

  • Caley MJ, St John JS (1996) Refuge availability structures assemblages of tropical reef fishes. J Anim Ecol 65:414–428

    Article  Google Scholar 

  • Choat JH, Bellwood DR (1985) Interactions amongst herbivorous fishes on a coral reef: influence of spatial variation. Mar Biol 89:221–234

    Article  Google Scholar 

  • Clark RD, Pittman SJ, Caldow C, Christensen J, Roque B, Appeldoorn RS, Monaco ME (2009) Nocturnal fish movement and trophic flow across habitat boundaries in a coral reef ecosystem (SW Puerto Rico). Caribb J Sci 45:282–303

    Google Scholar 

  • Cockle KL, Martin K, Wesołowski T (2011) Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Front Ecol Environ 9:377–382

    Article  Google Scholar 

  • Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish 9:286–307

    Article  Google Scholar 

  • Connell SD (1998) Patterns of pisciviory by resident predatory reef fish at One Tree Reef, Great Barrier Reef. Mar Freshw Res 49:25–30

    Article  Google Scholar 

  • Craig MT, Eble JA, Bowen BW, Robertson DR (2007) High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae). Mar Ecol Prog Ser 334:245–254

    Article  CAS  Google Scholar 

  • Depczynski M, Fulton C, Marnane M, Bellwood D (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120

    Article  PubMed  Google Scholar 

  • Dickens LC, Goatley CHR, Tanner JK, Bellwood DR (2011) Quantifying relative diver effects in underwater visual censuses. PLoS ONE 6:e18965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Clim Change 1:165–169

    Article  CAS  Google Scholar 

  • Farmer NA, Ault JS (2011) Grouper and snapper movements and habitat use in Dry Tortugas, Florida. Mar Ecol Prog Ser 433:169–184

    Article  Google Scholar 

  • Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Bijoux JP, Robinson J (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci USA 103:8425–8429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J, Bijoux JP, Daw TM (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv Biol 21:1291–1300

    Article  PubMed  Google Scholar 

  • Grüss A, Kaplan DM, Guénette S, Roberts CM, Botsford LW (2011) Consequences of adult and juvenile movement for marine protected areas. Biol Conserv 144:692–702

    Article  Google Scholar 

  • Helfman GS (1981) The advantage to fishes of hovering in shade. Copeia 2:392–400

    Article  Google Scholar 

  • Hitt S, Pittman S, Brown K (2011) Tracking and mapping sun-synchronous migrations and diel space use patterns of Haemulon sciurus and Lutjanus apodus in the U.S. Virgin Islands. Environ Biol Fish 92:525–538

    Article  Google Scholar 

  • Hixon MA, Carr MH (1997) Synergistic predation, density dependence, and population regulation in marine fish. Science 277:946–949

    Article  CAS  Google Scholar 

  • Holbrook SJ, Brooks AJ, Schmitt RJ (2002) Variation in structural attributes of patch-forming corals and in patterns of abundance of associated fishes. Mar Freshw Res 53:1045–1053

    Article  Google Scholar 

  • Kerry JT, Bellwood DR (2012) The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs 31:415–424

    Article  Google Scholar 

  • Lemoine NP, Valentine JF (2012) Structurally complex habitats provided by Acropora palmata influence ecosystem processes on a reef in the Florida Keys National Marine Sanctuary. Coral Reefs 31:779–786

    Article  Google Scholar 

  • Lingo ME, Szedlmayer ST (2006) The influence of habitat complexity on reef fish communities in the northeastern Gulf of Mexico. Environ Biol Fish 76:71–80

    Article  Google Scholar 

  • Lirman D (1999) Reef fish communities associated with Acropora palmata: relationships to benthic attributes. Bull Mar Sci 65:235–252

    Google Scholar 

  • Mac Nally R (2008) The lag dæmon: hysteresis in rebuilding landscapes and implications for biodiversity futures. J Environ Manag 88:1202–1211

    Article  Google Scholar 

  • Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480

    Article  CAS  PubMed  Google Scholar 

  • Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures – implications for conservation. Biol Conserv 132:311–321

    Article  Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: different susceptibilities among taxa. Coral Reefs 19:155–163

    Article  Google Scholar 

  • Mazur MM, Beauchamp DA (2003) A comparison of visual prey detection among species of piscivorous salmonids: effects of light and low turbidities. Environ Biol Fish 67:397–405

    Article  Google Scholar 

  • Munday PL, Jones GP, Caley MJ (1997) Habitat specialisation and the distribution and abundance of coral-dwelling gobies. Mar Ecol Prog Ser 152:227–239

    Article  Google Scholar 

  • Nanami A, Yamada H (2009) Site fidelity, size, and spatial arrangement of daytime home range of thumbprint emperor Lethrinus harak (Lethrinidae). Fish Sci 75:1109–1116

    Article  CAS  Google Scholar 

  • Neudecker S (1989) Eye camouflage and false eyespots: chaetodontid responses to predators. Environ Biol Fish 25:143–157

    Article  Google Scholar 

  • Noble MM, van Laake G, Berumen ML, Fulton CJ (2013) Community change within a Caribbean coral reef marine protected area following two decades of local management. PLoS ONE 8:e54069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paddack MJ, Reynolds JD, Aguilar C, Appeldoorn RS, Beets J, Burkett EW, Chittaro PM, Clarke K, Esteves R, Fonseca AC, Forrester GE, Friedlander AM, García-Sais J, González-Sansón G, Jordan LKB, McClellan DB, Miller MW, Molloy PP, Mumby PJ, Nagelkerken I, Nemeth M, Navas-Camacho R, Pitt J, Polunin NVC, Reyes-Nivia MC, Robertson DR, Rodríguez-Ramírez A, Salas E, Smith SR, Spieler RE, Steele MA, Williams ID, Wormald CL, Watkinson AR, Côté IM (2009) Recent region-wide declines in Caribbean reef fish abundance. Curr Biol 19:590–595

    Article  CAS  PubMed  Google Scholar 

  • Pittman SJ, McAlpine CA (2003) Movements of marine fish and decapod crustaceans: process, theory and application. Adv Mar Biol 44:205–294

    Article  CAS  PubMed  Google Scholar 

  • Samoilys MA (1997) Movement in a large predatory fish: coral trout, Plectropomus leopardus (Pisces: Serranidae), on Heron Reef, Australia. Coral Reefs 16:151–158

    Article  Google Scholar 

  • Schiegg K (2000) Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience 7:290–298

    Google Scholar 

  • Stagoll K, Lindenmayer DB, Knight E, Fischer J, Manning AD (2012) Large trees are keystone structures in urban parks. Conserv Lett 5:115–122

    Article  Google Scholar 

  • Stimson J (1985) The effect of shading by the table coral Acropora hyacinthus on understory corals. Ecology 66:40–53

    Article  Google Scholar 

  • Sweet M, Kirkham N, Bendall M, Currey L, Bythell J, Heupel M (2012) Evidence of melanoma in wild marine fish populations. PLoS ONE 7:e41989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Welsh JQ, Bellwood DR (2012) Spatial ecology of the steephead parrotfish (Chlorurus microrhinos): an evaluation using acoustic telemetry. Coral Reefs 31:55–65

    Article  Google Scholar 

  • Wilson SK, Burgess SC, Cheal AJ, Emslie M, Fisher R, Miller I, Polunin NVC, Sweatman HPA (2008) Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J Anim Ecol 77:220–228

    Article  PubMed  Google Scholar 

  • Wilson SK, Fisher R, Pratchett MS, Graham NAJ, Dulvy NK, Turner RA, Cakacaka A, Polunin NVC (2010) Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecol Appl 20:442–451

    Article  CAS  PubMed  Google Scholar 

  • Wozniak B, Dera J (2007) Light absorption in sea water. Springer, New York

    Google Scholar 

  • Zamzow J (2004) Effects of diet, ultraviolet exposure, and gender on the ultraviolet absorbance of fish mucus and ocular structures. Mar Biol 144:1057–1064

    Article  Google Scholar 

  • Zamzow J, Losey G (2002) Ultraviolet radiation absorbance by coral reef fish mucus: Photo-protection and visual communication. Environ Biol Fish 63:41–47

    Article  Google Scholar 

  • Zeller DC (1997) Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae). Mar Ecol Prog Ser 154:65–77

    Article  Google Scholar 

  • Zeller DC (2002) Tidal current orientation of Plectropomus leopardus (Serranidae). Coral Reefs 21:183–187

    Google Scholar 

Download references

Acknowledgments

This study was conducted on Jiigurru in the traditional sea country of the Dingaal people. Thanks to A. Hoey, P. Doherty and two anonymous reviewers for helpful comments, D. Buchler, M. Giammusso, J. Rizzari, T. Stephens and H. Welch for assistance in the field, and the staff of Lizard Island Research Station (a facility of the Australian Museum) for invaluable support and facilities. Funding for the project was provided by the Australian Research Council (D. R. B.). Research was conducted under GBRMPA permit #G12/35566.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Kerry.

Additional information

Communicated by Handling Editor Hugh Sweatman

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerry, J.T., Bellwood, D.R. Do tabular corals constitute keystone structures for fishes on coral reefs?. Coral Reefs 34, 41–50 (2015). https://doi.org/10.1007/s00338-014-1232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1232-4

Keywords

Navigation