Skip to main content

Advertisement

Log in

A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Halimeda opuntia is a cosmopolitan marine calcifying green alga in shallow tropical marine environments. Besides Halimeda’s contribution to a diverse habitat, the alga is an important sediment producer. Fallen calcareous segments of Halimeda spp. are a major component of carbonate sediments in many tropical settings and play an important role in reef framework development and carbonate platform buildup. Consequently the calcification of H. opuntia accounts for large portions of the carbonate budget in tropical shallow marine ecosystems. Earlier studies investigating the calcification processes of Halimeda spp. have tended to focus on the microstructure or the physiology of the alga, thus overlooking the interaction of physiological and abiotic processes behind the formation of the skeleton. By analyzing microstructural skeletal features of Halimeda segments with the aid of scanning electron microscopy and relating their occurrence to known physiological processes, we have been able to identify the initiation of calcification within an organic matrix and demonstrate that biologically induced cementation is an important process in calcification. For the first time, we propose a model for the calcification of Halimeda spp. that considers both the alga’s physiology and the carbon chemistry of the seawater with respect to the development of different skeletal features. The presence of an organic matrix and earlier detected external carbonic anhydrase activity suggest that Halimeda spp. exhibit biotic precipitation of calcium carbonate, as many other species of marine organisms do. On the other hand, it is the formation of micro-anhedral carbonate through the alga’s metabolism that leads to a cementation of living segments. Precisely, this process allows H. opuntia to contribute substantial amounts of carbonate sediments to tropical shallow seas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970

    Article  CAS  Google Scholar 

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:980–987

    Article  CAS  PubMed  Google Scholar 

  • Alexandersson ET (1972) Intragranular growth of marine aragonite and Mg-calcite; evidence of precipitation from supersaturated seawater. J Sediment Res 42:441–460

    CAS  Google Scholar 

  • Alexandersson ET (1974) Carbonate cementation in coralline algal nodules in the Skagerrak, North Sea; biochemical precipitation in undersaturated waters. J Sediment Res 1:7–26

    Google Scholar 

  • Alexandersson ET, Milliman JD (1981) Intragranular Mg-calcite cement in Halimeda plates from the Brazilian continental shelf. J Sediment Res 51:1309–1314

    CAS  Google Scholar 

  • Arias JL, Fernández MS (2008) Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem Rev 108:4475–4482

    Article  CAS  PubMed  Google Scholar 

  • Arnott HJ (1982) Three systems of biomineralization in plants with comments on the associated organic matrix. In: Nancollas GH (ed) Biological mineralization and demineralization., Springer, Berlin Heidelberg, pp 199–218

  • Bertucci A, Moya A, Tambutté S, Allemand D, Supuran CT, Zoccola D (2013) Carbonic anhydrases in anthozoan corals–a review. Bioorg Med Chem 21:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Böhm EL (1973) Composition and calcium binding properties of the water soluble polysaccharides in the calcareous alga Halimeda opuntia (L.) (Chlorophyta, Udoteaceae). Internationale Revue der gesamten Hydrobiologie und Hydrogeographie 58:117–126

    Article  Google Scholar 

  • Böhm EL, Goreau T (1973) Rates of turnover and net accretion of calcium and the role of calcium binding polysaccharides during calcification in the calcareous alga Halimeda opuntia (L.). Internationale Revue der gesamten Hydrobiologie und Hydrogeographie 58:723–740

    Article  Google Scholar 

  • Bonucci E (2007) Main suggested calcification mechanisms: extracellular matrix. In: Schreck S (ed) Biological calcification: normal and pathological processes in the early stages. Springer, Heidelberg, pp 507–558

    Google Scholar 

  • Borowitzka MA (1982a) Morphological and cytological aspects of algal calcification. Int Rev Cytol 74:127–162

    Article  CAS  Google Scholar 

  • Borowitzka MA (1982b) Mechanism in algal calcification. Progress in Phycological Research 1:137–177

    CAS  Google Scholar 

  • Borowitzka MA, Larkum AWD (1976a) Calcification in the green alga Halimeda. III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. J Exp Bot 27:879–893

    Article  CAS  Google Scholar 

  • Borowitzka MA, Larkum AWD (1976b) Calcification in the green alga Halimeda IV. The action of metabolic inhibitors on photosynthesis and calcification. J Exp Bot 27:894–907

    Article  CAS  Google Scholar 

  • Comeau S, Carpenter R, Edmunds PJ (2012) Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc R Soc B Biol Sci 280:1753

    Article  Google Scholar 

  • Cuif JP, Dauphin Y, Nehrke G, Nouet J, Perez-Huerta A (2012) Layered growth and crystallization in calcareous biominerals: impact of structural and chemical evidence on two major concepts in invertebrate biomineralization studies. Minerals 2:11–39

    Article  CAS  Google Scholar 

  • De Beer D, Larkum AWD (2001) Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ 24:1209–1217

    Article  Google Scholar 

  • DeWreede R (2006) Biomechanical properties of coenocytic algae (Chlorophyta, Caulerpales). Sci Asia Suppl 1:57–62

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A 34:1733–1743

    Article  CAS  Google Scholar 

  • Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem 80(2):185–197

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christopher JR (2007) Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization Special Publication 3, Sidney, British Columbia pp 176

  • Doney SC, Balch WM, Fabry VJ, Feely RA (2009) Ocean acidification: a critical emerging problem for the ocean sciences. North 22:16–25

    Google Scholar 

  • Drew EEA (1983) Halimeda biomass, growth rates and sediment generation on reefs in the central Great Barrier Reef province. Coral Reefs 2:101–110

    Article  Google Scholar 

  • Drew E, Abel K (1988) Studies on Halimeda I. The distribution and species composition of Halimeda meadows throughout the Great Barrier Reef Province. Coral Reefs 6:195–205

    Article  Google Scholar 

  • Faatz M, Gröhn F, Wegner G (2004) Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization. Adv Mater 16:996–1000

    Article  CAS  Google Scholar 

  • Falini G, Reggi M, Fermani S, Sparla F, Goffredo S, Dubinsky Z, Levi O, Dauphin Y, Cuif JP (2013) Control of aragonite deposition in colonial corals by intra-skeletal macromolecules. J Struct Biol 183:226–238

    Article  CAS  PubMed  Google Scholar 

  • Folk RL (1959) Practical petrographic classification of limestones. Am Assoc Pet Geol Bull 43(1):1–38

    CAS  Google Scholar 

  • Folk R, Robles R (1964) Carbonate sands of isla perez, alacran reef complex, Yucatan. J Geol 75:412–437

    Article  Google Scholar 

  • Freile D, Milliman J, Hillis L (1995) Leeward bank margin Halimeda meadows and draperies and their sedimentary importance on the western Great Bahama Bank slope. Coral Reefs 14:27–33

    Article  Google Scholar 

  • Hillis, L (1997) Coralgal reefs from a calcareous green alga perspective and a first carbonate budget. Proc 8th Int Coral Reef Symp 1:761–766

  • Hillis L (2001) The calcareous reef alga Halimeda (Chlorophyta, Byropsidales): a cretaceous genus that diversified in the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 166:89–100

    Article  Google Scholar 

  • Hillis-Colinvaux L (1980) Ecology and taxonomy of Halimeda: primary producer of coral reefs. Adv Mar Biol 17:1–327

    Article  Google Scholar 

  • Hine AC, Hallock P, Harris MW, Mullins HT, Belknap DF, Jaap WC (1988) Halimeda bioherms along an open seaway: Miskito Channel, Nicaraguan Rise, SW Caribbean Sea. Coral Reefs 6:173–178

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hofmann LC, Straub S, Bischof K (2013) Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. J Exp Bot 64(4):899–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hofmann LC, Heiden J, Bischof K, Teichberg M (2014) Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH. Planta 239:231–242

    Article  CAS  PubMed  Google Scholar 

  • Holcomb M, Cohen AL, Gabitov RI, Hutter JL (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73:4166–4179

    Article  CAS  Google Scholar 

  • Isenberg H, Douglas S, Lavine L, Spicer S, Weissfeller H (1966) A protozoan model of hard tissue formation. Ann NY Acad Sci 136:157–188

  • Jindrich V (1969) Recent carbonate sedimentation by tidal channels in the Lower Florida Keys. J Sediment Res 39:531–553

    CAS  Google Scholar 

  • Jinendradasa S, Ekaratne S (2002) Composition and monthly variation of fauna inhabiting reef-associated Halimeda. Proc 9th Int Coral Reef Symp 2:1059–1063

  • Johns H, Moore C (1988) Reef to basin sediment transport using Halimeda as a sediment tracer, Grand Cayman Island, West Indies. Coral Reefs 6:187–193

    Article  Google Scholar 

  • Kinsey D, Hopley D (1991) The significance of coral reefs as global carbon sinks–response to greenhouse. Palaeogeogr Palaeoclimatol Palaeoecol 89:363–377

    Article  Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers. A guide for future research. Report of a workshop sponsored by NSF, NOAA and USGS

  • Kooistra WHCF, Verbruggen H (2005) Genetic patterns in the calcified tropical seaweeds Halimeda opuntia, H. distorta, H. hederacea, and H. minima (Bryopsidales, Chlorophyta) provide insights in species boundaries and interoceanic dispersal. J Phycol 41:177–187

    Article  CAS  Google Scholar 

  • Larkum AWD, Salih A, Kühl M (2011) Rapid mass movement of chloroplasts during segment formation of the calcifying siphonalean green alga Halimeda macroloba. Plos One 6:e20841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liebezeit G, Dawson R (1981) Changes in the polysaccharide matrix of calcareous green algae during growth. Indices biochemiques et milieux marins. Journées du GABIM 14:147–154

    Google Scholar 

  • Littler M (1976) Calcification and its role among the macroalgae. Micronesica 12:27–41

    Google Scholar 

  • Macintyre I, Reid RP (1995) Crystal alteration in a living calcareous alga (Halimeda): implications for studies in skeletal diagenesis. J Sediment Res A Sediment Petrol Process 65:143–153

    Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry, vol 5. Oxford University Press, New York

  • Marin F, Luquet G (2004) Molluscan shell proteins. C R Palevol 3:469–492

    Article  Google Scholar 

  • Marshall JF, Davies PJ (1988) Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6:139–148

    Article  Google Scholar 

  • Merbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  Google Scholar 

  • Milliman JD (1974) Recent sedimentary carbonates, part 1. Marine carbonates. Springer, Heidelberg

    Book  Google Scholar 

  • Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol Rundsch 85:496–504

    Article  CAS  Google Scholar 

  • Mitsunaga K, Akasaka K, Shimada H, Fujino Y, Yasumasu I, Numanoi H (1986) Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules. Cell Differ 18:257–262

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto H, Miyoshi F, Kohno J (2005) The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zool Sci 22:311–315

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93:9657–9660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore CH, Graham EA, Land LS (1976) Sediment transport and dispersal across the deep fore-reef and island slope (-55 m to -305 m), Discovery Bay, Jamaica. J Sediment Petrol 46:174–187

    Google Scholar 

  • Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, Vullo D, Supuran C, Allemand D, Zoccola D (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization, and role in biomineralization. J Biol Chem 283:25475–25484

    Article  CAS  PubMed  Google Scholar 

  • Multer HG (1988) Growth rate, ultrastructure and sediment contribution of Halimeda incrassata and Halimeda monile, Nonsuch and Falmouth Bays, Antigua, W.I. Coral Reefs 6:179–186

    Article  Google Scholar 

  • Multer HG, Clavijo I (2004) Halimeda investigations: progress and problems. NOAA/RSMAS

  • Nakahara H, Bevelander G (1978) The formation of calcium carbonate crystals in Halimeda incrassata with special reference to the role of the organic matrix. Jap J Phycol 26:9–12

    Google Scholar 

  • Neumann AC, Land LS (1975) Lime mud deposition and calcareous algae in the Bight of Abaco, Bahamas; a budget. J Sediment Res 45:763–786

    CAS  Google Scholar 

  • Orme GR, Salama MS (1988) Form and seismic stratigraphy of Halimeda banks in part of the northern Great Barrier Reef Province. Coral Reefs 6:131–137

    Article  Google Scholar 

  • Paul V, Hay M (1986) Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar Ecol Prog Ser 33:255–264

    Article  CAS  Google Scholar 

  • Payri CE (1988) Halimeda contribution to organic and inorganic production in a Tahitian reef system. Coral Reefs 6:251–262

    Article  Google Scholar 

  • Phipps C, Roberts HH (1988) Seismic characteristics and accretion history of Halimeda bioherms on Kalukalukuang Bank, eastern Java Sea (Indonesia). Coral Reefs 6:149–159

    Article  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) CO2SYS DOS Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN

  • Pomar L, Kendall CGSC (2007) Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. In: Lukasik J, Simo JA (eds) Controls on carbonate platform and reef development. SEPM 89:187–216

  • Rahman MA, Oomori T, Uehara T (2008) Carbonic anhydrase in calcified endoskeleton: novel activity in biocalcification in alcyonarian. Mar Biotechnol 10:31–38

    Article  CAS  PubMed  Google Scholar 

  • Rao VP, Veerayya M, Nair RR, Dupeuble PA, Lamboy M (1994) Late Quaternary Halimeda bioherms and aragonitic faecal pellet-dominated sediments on the carbonate platform of the western continental shelf of India. Mar Geol 121:293–315

    Article  Google Scholar 

  • Rees SA, Opdyke BN, Wilson PA, Henstock TJ (2007) Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia. Coral Reefs 26:177–188

    Article  Google Scholar 

  • Reid RP, Macintyre GI (1998) Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains. J Sediment Res 68:928–946

    Article  CAS  Google Scholar 

  • Ries JB (2009) Effects of secular variation in seawater Mg/Ca ratio (calcite-aragonite seas) on CaCO3 sediment production by the calcareous algae Halimeda, Penicillus and Udotea - evidence from recent experiments and the geological record. Terra Nova 21:323–339

    Article  CAS  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Roberts H, Phipps C, Effendi L (1987) Halimeda bioherms of the eastern Java Sea, Indonesia. Geology 15:371–374

    Article  Google Scholar 

  • Robinson C, Brooks SJ, Shore RC, Kirkham J (1998) The developing enamel matrix: nature and function. Eur J Oral Sci 106:282–291

    CAS  PubMed  Google Scholar 

  • Salgado LT, Amado Filho GM, Fernandez MS, Arias JL, Farina M (2011) The effect of alginates, fucans and phenolic substances from the brown seaweed Padina gymnospora in calcium carbonate mineralization in vitro. J Cryst Growth 321:65–71

    Article  CAS  Google Scholar 

  • Schupp PJ, Paul VJ (1994) Calcium carbonate and secondary metabolites in tropical seaweeds: variable effects on herbivorous fishes. Ecology 75:1172–1185

    Article  Google Scholar 

  • Sikes CS (1978) Calcification and cation sorption of Cladophoha glomerata (chlorophyta) 1, 2. J Phycol 14(3):325–329

    Article  CAS  Google Scholar 

  • Simkiss K (1965) The organic matrix of the oyster shell. Comp Biochem Phys 16:427–435

    Article  CAS  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Stanley SM, Ries JB, Hardie LA (2010) Increased production of calcite and slower growth for the major sediment-producing alga Halimeda as the Mg/Ca ratio of seawater is lowered to a “Calcite Sea” level. J Sediment Res 80:6–16

    Article  CAS  Google Scholar 

  • Tambutté S, Tambutté E, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins J (2007) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151:71–83

    Article  Google Scholar 

  • Tussenbroek BI, van Dijk JK (2007) Spatial and temporal variability in biomass and production of psammophytic Halimeda incrassata (Bryopsidales, Chlorophyta) in a Caribbean reef lagoon. J Phycol 43:69–77

    Article  Google Scholar 

  • Tsuzuki M, Miyachi S (1989) The function of carbonic anhydrase in aquatic photosynthesis. Aquat Bot 34:85–104

    Article  CAS  Google Scholar 

  • Verbruggen H, Kooistra W (2004) Morphological characterization of lineages within the calcified tropical seaweed genus Halimeda (Bryopsidales, Chlorophyta). Eur J Phycol 39:213–228

    Article  Google Scholar 

  • Verbruggen H, Littler DS, Littler MM (2007) Halimeda pygmaea and Halimeda pumila (Bryopsidales, Chlorophyta): two new dwarf species from fore reef slopes in Fiji and the Bahamas. Phycologia 46:513–520

    Article  Google Scholar 

  • Verbruggen H, De Clerck O, Cocquyt E, Kooistra WHCF, Coppejans E (2005) Morphometric taxonomy of siphonous green algae: a methodological study within the genus Halimeda (Bryopsidales). J Phycol 41:126–139

    Article  Google Scholar 

  • Vroom PS, Smith CM, Coyer JA, Walters LJ, Hunter CL, Beach KS, Smith JE (2003) Field biology of Halimeda tuna (Bryopsidales, Chlorophyta) across a depth gradient: comparative growth, survivorship, recruitment, and reproduction. Hydrobiologia 501:149–166

    Article  Google Scholar 

  • Watanabe T, Fukuda I, China K, Isa Y (2003) Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp Biochem Physiol B Biochem Mol Biol 136:767–774

    Article  PubMed  Google Scholar 

  • Wefer G (1980) Carbonate production by algae Halimeda, Penicillus and Padina. Nature 285:323–324

    Article  CAS  Google Scholar 

  • Weiner S, Lowenstam H (1986) Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. Crit Rev Biochem Mol Biol 20:365–408

    Article  CAS  Google Scholar 

  • Weiss IM, Marin F (2008) The role of enzymes in biomineralization processes. In: Sigel A, Sigel H, Sigel RKO (eds) Biomineralization: from nature to application. Wiley, West Sussex, pp 71–126

    Google Scholar 

  • Wheeler AP, Sikes CS (1984) Regulation of carbonate calcification by organic matrix. Integr Comp Biol 24:933–944

    Article  CAS  Google Scholar 

  • Wienberg C, Westphal H, Kwoll E, Hebbeln D (2010) An isolated carbonate knoll in the Timor Sea (Sahul Shelf, NW Australia): facies zonation and sediment composition. Facies 56:179–193

    Article  Google Scholar 

  • Wilbur KM, Hillis-Colinvaux L, Watabe N (1969) Electron microscope study of calcification in the alga Halimeda (order Siphonales) 1. Phycologia 8:27–35

    Article  CAS  Google Scholar 

  • Wiman SK, McKendree WG (1975) Distribution of Halimeda plants and sediments on and around a patch reef near Old Rhodes Key, Florida. J Sediment Res 45:415–421

    Google Scholar 

  • Zhong C, Chu CC (2010) On the origin of amorphous cores in biomimetic CaCO3 spherulites: new insights into spherulitic crystallization. Cryst Growth Des 10:5043–5049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sebastian Flotow (ZMT-Bremen) is thanked for preparing thin-sections and help with the SEM. Achim Meyer (ZMT-Bremen) provided help in conducting experiments and maintaining the aquaria. Claire Reymond and Julien Michel (ZMT-Bremen) thoughtfully reviewed the manuscript. We are grateful for the funding of this study by the ZMT-Bremen. We sincerely thank the associate editor and two reviewers for the helpful comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Wizemann.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wizemann, A., Meyer, F.W. & Westphal, H. A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux). Coral Reefs 33, 951–964 (2014). https://doi.org/10.1007/s00338-014-1183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1183-9

Keywords

Navigation