Coral Reefs

, Volume 33, Issue 3, pp 675–686 | Cite as

Differential response of two Mediterranean cold-water coral species to ocean acidification

  • Juancho MovillaEmail author
  • Covadonga Orejas
  • Eva Calvo
  • Andrea Gori
  • Àngel López-Sanz
  • Jordi Grinyó
  • Carlos Domínguez-Carrió
  • Carles Pelejero


Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.


Ocean acidification Cold-water coral Aquaria experiment Dendrophyllia cornigera Desmophyllum dianthus Mediterranean Sea 



We want to thank A. Olariaga for his suggestions during the experimental setup, to M. Dalmau, F. X. Capdevila, and L. Pedret, for helping with coral maintenance, to M. Delgado (ZAE, ICM) for technical assistances and to the Marine Technology Unit (UTM, CSIC), M. Taviani (ISMAR-CNR, Bologna) and the crews of RVs ‘Urania,’ ‘Garcia del Cid’ and the ‘JAGO-Team’ (IFM-GEOMAR) for their support during coral collection. We are also in debt with P. Siles for valuable advice in coral maintenance and behavior. Constructive comments by C. Maier and an anonymous reviewer greatly improved this paper. This research was supported by the European Projects HERMES (Goce-CT-2005-511234-I), HERMIONE (Grant Agreement Number 226354), the Spanish Projects CTM2009-08849/MAR and CTM2012-32017 and by the Marine Biogeochemistry and Global Change research group (Generalitat de Catalunya, 2009SGR142). J.M. was funded by a FPI studentship (BES-2007-16537) and A.G. by an I3P studentship (Ref. I3P-BPD2005) from the Spanish Government. The experiment was performed at the Zona de Acuarios Experimentales (ZAE) of ICM-CSIC.

Supplementary material

338_2014_1159_MOESM1_ESM.tif (3.7 mb)
Supplementary material Fig. S1. Specimens of Desmophyllum dianthus (left) and Dendrophyllia cornigera (right) in the aquaria (Photo credits by E. Obis). (TIFF 3831 kb)
338_2014_1159_MOESM2_ESM.docx (117 kb)
Supplementary material 2 (DOCX 117 kb)
338_2014_1159_MOESM3_ESM.docx (109 kb)
Supplementary material 3 (DOCX 108 kb)


  1. Addamo AM, Reimer JD, Taviani M, Freiwald A, Machordom A (2012) Desmophyllum dianthus (Esper, 1794) in the Scleractinian phylogeny and its intraspecific diversity. PLoS ONE 7(11):1–9CrossRefGoogle Scholar
  2. Al-Horani FA, Al-Moghrabi SM, De Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426Google Scholar
  3. Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Heidelberg, pp 119–150Google Scholar
  4. Bak RPM, Elgershuizen JHBW (1976) Patterns of oil-sediment rejection in corals. Mar Biol 37:105–113CrossRefGoogle Scholar
  5. Barnes H, Blackstock J (1973) Estimation of lipids in marine animals and tissues: detailed investigation of the sulphophosphovanillin method for total lipids. J Exp Biol 12:103–118CrossRefGoogle Scholar
  6. Bethoux JP, Boukhary MS, Ruiz-Pino D, Morin P, Copin Montegut C (2005) Nutrient, oxygen and carbon ratios, CO2 sequestration and anthropogenic forcing in the Mediterranean Sea. In: Saliot A (ed) The Mediterranean Sea. Spinger Berlin Heidelberg, pp 67–86Google Scholar
  7. Bramanti L, Movilla J, Guron M, Calvo E, Gori A, Dominguez-Carrió C, Grinyó J, López-Sanz A, Martínez-Quintana A, Pelejero C, Ziveri P, Rossi S (2013) Detrimental effects of Ocean Acidification on the economically important Mediterranean red coral (Corallium rubrum). Glob Chang Biol 19:1897–1908PubMedCrossRefGoogle Scholar
  8. Brito A, Ocaña O (2004) Corals of the Canary Islands. In: Lemus F (ed) Skeleton anthozoa of the litoral and deep bottoms. La Laguna, Spain, pp 428–431Google Scholar
  9. Brooke S, Young CM (2005) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146:665–675CrossRefGoogle Scholar
  10. Brooke S, Young CM (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Prog Ser 397:153–161CrossRefGoogle Scholar
  11. Brooke S, Järnegren J (2013) Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord, Norway. Mar Biol 160:139–153CrossRefGoogle Scholar
  12. Bucher D, Harriott VJ, Roberts LG (1998) Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Biol Ecol 228:117–136CrossRefGoogle Scholar
  13. Calvo E, Simó R, Coma R, Ribes M, Pascual J, Sabatés A, Gili JM, Pelejero C (2011) Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Clim Res 50:1–29CrossRefGoogle Scholar
  14. Carreiro-Silva M, Cerqueira T, Godinho A, Caetano M, Santos RS, Bettencourt R (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs [doi: 10.1007/s00338-014-1129-2]
  15. Castric-Fey A (1996) Le Scléractiniaire Dendrophyllia cornigera en eau peu profonde, a Ouessant (Bretagnac, Atlantique NE) en l’absence de barrière thermique. Oceanol Acta 19:665–671Google Scholar
  16. Chadwick NE (1987) Interspecific aggressive behavior of the corallimorpharian Corynactis californica (Cnidaria: Anthozoa): Effects on sympatric corals and sea anemones. Biol Bull 173:110–125CrossRefGoogle Scholar
  17. Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res 40:2115–2129CrossRefGoogle Scholar
  18. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: Uncovering the mechanism. Oceanography 22:118–127CrossRefGoogle Scholar
  19. Company JB, Puig P, Sardà F, Palanques A, Latasa M, Scharek R (2008) Climate Influence on Deep Sea Populations. PLoS One 3(1):e1431PubMedCentralPubMedCrossRefGoogle Scholar
  20. Cooper TF, Lai M, Ulstrup KE, Saunders SM, Flematti GR, Radford B, van Oppen MJH (2011) Symbiodinium genotypic and environmental controls on lipids in reef building corals. PloS One 6(5):e20434PubMedCentralPubMedCrossRefGoogle Scholar
  21. Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique*. Mar Biol 101:389–395CrossRefGoogle Scholar
  22. Dodds LA, Roberts JM, Taylor AC, Marubini F (2007) Metabolic tolerance of the cold- water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349:205–214CrossRefGoogle Scholar
  23. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean Acidification: The Other CO2 Problem. Ann Rev Mar Sci 1:169–192PubMedCrossRefGoogle Scholar
  24. Dullo WC, Flögel S, Rüggeberg A (2008) Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar Ecol Prog Ser 371:165–176CrossRefGoogle Scholar
  25. Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2012) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 160:1835–1843CrossRefGoogle Scholar
  26. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  27. Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Chang Biol 18:843–853CrossRefGoogle Scholar
  28. Gass SE, Roberts JM (2010) Growth and branching patterns of Lophelia pertusa (Scleractinia) from the North Sea. J Mar Biol Assoc U.K. 91: 831–835Google Scholar
  29. Gattuso JP, Hansson L (2011) Ocean acidification: background and history. In: Hansson L (ed) Gattuso, J-P. Oxford University Press, Ocean acidification, pp 1–20Google Scholar
  30. Gori A, Grover R, Orejas C, Sikorski S, Ferrier-Pagès C (2013a) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep-Sea Res Part II 99:42–50CrossRefGoogle Scholar
  31. Gori A, Orejas C, Madurell T, Bramanti L, Martins M, Quintanilla E, Marti-Puig P, Lo Iacono C, Puig P, Requena S, Greenacre M, Gili JM (2013b) Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10:2049–2060CrossRefGoogle Scholar
  32. Guinotte JM, Orr JC, Cairns SS, Freiwald A, Morgan L, George R (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146CrossRefGoogle Scholar
  33. Hennige SJ, Wicks LC, Kamenos NA, Bakker D, Findlay HS, Dumousseaud C, Roberts JM (2013) Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to Ocean Acidification. Deep-Sea Res Part II 99:27–35CrossRefGoogle Scholar
  34. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  35. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewel MA (2010) The effects of ocean acidification on calcifying organisms in marine ecosystems: an organism to ecosystem perspective. Annu Rev Ecol and Syst 41:127–147CrossRefGoogle Scholar
  36. Jantzen C, Häussermann V, Försterra G, Laudien J, Ardelan M, Maier S, Richter C (2013) Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile). Mar Biol 160:2597–2607CrossRefGoogle Scholar
  37. Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: DR Stoddart DR, Johannes RE (eds) Coral reefs: monographs on oceanographic methodology, UNESCO, pp 529–541Google Scholar
  38. Kaniewska P, Campbell PR, Kline DI, Rodriguez-Lanetty M, Miller DJ, Dove S, Hoegh-Guldberg O (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS ONE 7(4):e34659PubMedCentralPubMedCrossRefGoogle Scholar
  39. Khatiwala S, Tanhua T, Mikaloff-Fletcher S, Gerber M, Doney SC, Graven HD, Gruber N, McKinley GA, Murata A, Ríos AF, Sabine CL, Sarmiento JL (2013) Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–2219CrossRefGoogle Scholar
  40. Lang JC (1973) Interspecific aggression by scleractinians reef corals. 2. Why the race is not only to the swift. Bull Mar Sci 23:260–279Google Scholar
  41. Lang J, Chornesky EA (1990) Competition between scleractinian reef corals - a review of mechanisms and effects. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 209–252Google Scholar
  42. Maier C, Hegeman J, Weinbauer MG (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680CrossRefGoogle Scholar
  43. Maier C, Watremez P, Taviani M, Weinbauer MG, Gattuso JP (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc R Soc B Biol Sci 279:1716–1723CrossRefGoogle Scholar
  44. Maier C, Schubert A, Berzunza Sánchez MM, Weinbauer MG, Watremez P, Gattuso JP (2013a) End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PLoS ONE 8(4):e62655PubMedCentralPubMedCrossRefGoogle Scholar
  45. Maier C, Bils F, Weinbauer MG, Watremez P, Peck MA, Gattuso JP (2013b) Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10:7617–7640CrossRefGoogle Scholar
  46. McCulloch MT, Trotter J, Montagna P, Falter J, Dunbar RB, Freiwald A, Försterra G, López Correa M, Maier C, Rüggeberg A, Taviani M (2012) Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34CrossRefGoogle Scholar
  47. Milne Edwards H, Haime J (1848) Recherches sur les polypiers. Quartrième Mèmoire. Monographie des Astréides: Annales des Sciences Naturelles, Paris, série 3:209–320Google Scholar
  48. Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:83–104CrossRefGoogle Scholar
  49. Movilla J, Calvo E, Pelejero C, Coma R, Serrano E, Fernández-Vallejo P, Ribes M (2012) Calcification reduction and recovery in native and non-native Mediterranean corals in response to ocean acidification. J Exp Mar Biol Ecol 438:144–153CrossRefGoogle Scholar
  50. Movilla J, Gori A, Calvo E, Orejas C, López-Sanz A, Dominguez-Carrió C, Grinyó J, Pelejero C (2014) Resistance of two Mediterranean cold-water coral species to low-pH conditions. Water 6:59–67CrossRefGoogle Scholar
  51. Moya A, Huisman L, Ball EE, Hayward DC, Grasso LC, Chua CM, Woo HN, Gattuso JP, Forêt S, Miller DJ (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol 21:2440–2454PubMedCrossRefGoogle Scholar
  52. Naumann MS, Orejas C, Ferrier-Pagès C (2013a) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs 32:749–754CrossRefGoogle Scholar
  53. Naumann MS, Orejas C, Ferrier-Pagès C (2013b) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res Part II 99:36–41CrossRefGoogle Scholar
  54. Naumann MS, Orejas C, Wild C, Ferrier-Pagès C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576PubMedCrossRefGoogle Scholar
  55. Olariaga A, Gori A, Orejas C, Gili JM (2009) Development of an Autonomous Aquarium System for Maintaining Deep Corals. Oceanography 22:44–45CrossRefGoogle Scholar
  56. Orejas C, Gori A, Lo Iacono C, Puig P, Gili JM, Dale MMR (2009) Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Prog Ser 397:37–51CrossRefGoogle Scholar
  57. Orejas C, Ferrier-Pagès C, Reynaud S, Tsounis G, Allemand D, Gili JM (2011a) Experimental comparison of skeletal growth rates in the cold-water coral Madrepora oculata (Linnaeus, 1758) and three tropical scleractinian corals. J Exp Mar Biol Ecol 405:1–5CrossRefGoogle Scholar
  58. Orejas C, Ferrier-Pagès C, Reynaud S, Gori A, Beraud E, Tsounis G, Allemand D, Gili JM (2011b) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Prog Ser 429:57–65CrossRefGoogle Scholar
  59. Orr JC (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso J-P, Hansson L (eds) Ocean Acidification. Oxford University Press, Oxford, pp 41–66Google Scholar
  60. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear RJ, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686PubMedCrossRefGoogle Scholar
  61. Parker L, Ross P, Connor W, Pörtner H, Scanes E, Wright J (2013) Predicting the response of molluscs to the impact of ocean acidification. Biology 2:651–692PubMedCentralPubMedCrossRefGoogle Scholar
  62. Pelejero C, Calvo E, Hoegh-Guldberg O (2010) Paleo-perspectives on ocean acidification. Trends Ecol Evol 25:332–344PubMedCrossRefGoogle Scholar
  63. Perez FF, Fraga F (1987) A precise and rapid analytical procedure for alkalinity determination. Mar Chem 21:169–182CrossRefGoogle Scholar
  64. Perez FF, Rios AF, Rellán T, Alvarez M (2000) Improvements in a fast potentiometric seawater alkalinity determination. Cienc Mar 26:463–478Google Scholar
  65. Peters GP, Marland G, Le Quere C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nat Clim Chang 2:2–4CrossRefGoogle Scholar
  66. Plattner GK, Knutti R, Joos F, Stocker TF, Von-Bloh W, Brovkin V, Cameron D, Driesschaert E, Dutkiewicz S, Eby M, Edwards NR, Fichefet T, Hargreaves JC, Jones CD, Loutre MF, Matthews HD, Mouchet A, Müller SA, Nawrath S, Price A, Sokolov A, Strassmann KM, Weaver AJ (2008) Long-term climate commitments projected with climate–carbon cycle models. J Clim 21:2721–2751CrossRefGoogle Scholar
  67. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134CrossRefGoogle Scholar
  68. Risk MJ, Heikoop JM, Snow MG, Beukens R (2002) Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131CrossRefGoogle Scholar
  69. Roberts JM, Wheeler A, Freiwald A, Cairns S (2009) Cold-Water Corals: The Biology and Geology of Deep-Sea Coral Habitats, 1st edn New York: Cambridge University PressGoogle Scholar
  70. Schneider A, Wallace DWR, Körtzinger A (2007) Alkalinity of the Mediterranean Sea. Geophys Res Lett 34:1–5Google Scholar
  71. Schneider A, Tanhua T, Körtzinger A, Wallace DWR (2010) High anthropogenic carbon content in the eastern Mediterranean. J Geophys Res C 115:C12050CrossRefGoogle Scholar
  72. Slattery M, McClintock JB, Heine J (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190:61–77CrossRefGoogle Scholar
  73. Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533CrossRefGoogle Scholar
  74. Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A and Roberts MJ (eds) Cold-water corals and ecosystems, pp. 137–156Google Scholar
  75. Thresher R, Tilbrook B, Fallon SJ, Wilson NC, Adkins J (2011) Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar Ecol Prog Ser 442:87–99CrossRefGoogle Scholar
  76. Touratier F, Goyet C (2009) Decadal evolution of anthropogenic CO2 in the northwestern Mediterranean Sea from the mid-1990s to the mid-2000s. Deep-Sea Res Part I Oceanogr Res Pap 56:1708–1716CrossRefGoogle Scholar
  77. Touratier F, Goyet C (2011) Impact of the Eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea. Deep-Sea Res Part I Oceanogr Res Pap 58:1–15CrossRefGoogle Scholar
  78. Turley C, Eby M, Ridgwell AJ, Schmidt DN, Findlay HS, Brownlee C, Riebesell U, Fabry VJ, Feely RA, Gattuso JP (2010) The societal challenge of ocean acidification. Mar Pollut Bull 60:787–792PubMedCrossRefGoogle Scholar
  79. Tursi A, Mastrototaro F, Matarrese A, Maiorano P, D’Onghia G (2004) Biodiversity of the white coral reefs in the Ionian Sea (Central Mediterranean) Chem Ecol 20:107–116Google Scholar
  80. Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522CrossRefGoogle Scholar
  81. Waller RG, Tyler PA (2011) Reproductive patterns in two deep-water solitary corals from the north-east Atlantic Flabellum alabastrum and F. angulare (Cnidaria: Anthozoa: Scleractinia). J Mar Biol Assoc U.K. 91:669–675Google Scholar
  82. Wicks L, Roberts JM (2012) Benthic invertebrates in a high-CO2 world. Oceanography and Mar Biol Annu Rev 50:127–188Google Scholar
  83. Wijgerde T, Diantari R, Lewaru MW, Verreth JAJ, Osinga R (2011) Extracoelenteric zooplankton feeding is a key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis. J Exp Biol 214:3351–3357PubMedCrossRefGoogle Scholar
  84. Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, Iglesias-Prieto R, Palmer C, Bythell JC, Ortiz JC, Loya Y, van Woesik R (2011) Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res 62:205–215CrossRefGoogle Scholar
  85. Yamamoto A, Kawamiya M, Ishida A, Yamanaka Y, Watanabe S (2012) Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification. Biogeosciences 9:2365–2375CrossRefGoogle Scholar
  86. Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juancho Movilla
    • 1
    Email author
  • Covadonga Orejas
    • 2
  • Eva Calvo
    • 1
  • Andrea Gori
    • 1
  • Àngel López-Sanz
    • 1
  • Jordi Grinyó
    • 1
  • Carlos Domínguez-Carrió
    • 1
  • Carles Pelejero
    • 1
    • 3
  1. 1.Institut de Ciències del MarCSICBarcelonaSpain
  2. 2.Centro Oceanográfico de BalearesInstituto Español de Oceanografía (IEO)Palma de Mallorca, Illes BalearsSpain
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations