Skip to main content

Advertisement

Log in

Recruitment and mortality of the temperate coral Cladocora caespitosa: implications for the recovery of endangered populations

  • Note
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Long-lived species are characterized by low recruitment and mortality. In these species, longevity buffers low recruitment, but when catastrophic disturbances alter mortality, recruitment becomes critical for population recovery. In this study, we assessed basic biological traits—recruitment, post-settlement growth, and the mortality of juvenile corals—and related these factors to the adult mortality of one of the most important populations of the Mediterranean reef-building coral Cladocora caespitosa over a period of 6 yr. Adult mortality and recruitment rates were low (~1 % and 0.30 recruits m−2 yr−1, respectively), whereas the juvenile colony mortality was comparatively high (29 % in the smallest size-class, <5 polyps). The low recruitment rates will hardly balance the recurrent climate-related mortality that has affected this population. Conservation plans and inclusion in the protection lists are urgently needed, given the escalating threats and slow dynamics of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adjeroud M, Penin L, Carroll A (2007) Spatio-temporal heterogeneity in coral recruitment around Moorea, French Polynesia: Implications for population maintenance. J Exp Mar Biol Ecol 341:204–218

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER–E Ltd., Plymouth, United Kingdom

  • Ayre D, Hughes T (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590–1905

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Bolker B, Maechler M and Walker S (2013) Lme4: Linear mixed-effects models using Eigen and S4. R package. Version 1.0-4. Available at: http://cran.r-project.org/

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  PubMed  Google Scholar 

  • Coles SL, Brown EK (2007) Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai’i: the importance of recruitment. Coral Reefs 26:705–717

    Article  Google Scholar 

  • Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67:461–488

    Article  Google Scholar 

  • Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132

    Article  Google Scholar 

  • Edmunds PJ (2000) Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Mar Ecol Prog Ser 202:113–124

    Article  Google Scholar 

  • Garrabou J, Harmelin JG (2002) A 20-year study on life-history traits of a harvested long-lived temperate coral in the NW Mediterranean: insights into conservation and management needs. J Anim Ecol 71:966–978

    Article  Google Scholar 

  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Perez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biol 15:1090–1103

    Article  Google Scholar 

  • Glassom D, Chadwick N (2006) Recruitment, growth and mortality of juvenile corals at Eilat, northern Red Sea. Mar Ecol Prog Ser 318:111–122

    Article  Google Scholar 

  • Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 23:433–443

    Article  Google Scholar 

  • Guzner B, Novoplansky A, Chadwick N (2007) Population dynamics of the reef-building coral Acropora hemprichii as an indicator of reef condition. Mar Ecol Prog Ser 333:143–150

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EM, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  PubMed  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier Science, Amsterdam, pp 133–207

    Google Scholar 

  • Hoegh-Guldberg O, Mumby P, Hooten A, Steneck R, Greenfield P, Gomez E, Harvell C, Sale P, Edwards A, Caldeira K, Knowlton N, Eakin C, Iglesias-Prieto R, Muthiga N, Bradbury R, Dubi A, Hatziolos M (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Jackson JBC (1985) Population-Dynamics and Life Histories of Foliaceous Corals. Ecol Monogr 55:141–166

    Article  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263

    Article  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25(11):633–642

    Article  PubMed  Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (1999) Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397:59–63

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2000) Supply-side ecology works both ways: The link between benthic adults, fecundity, and larval recruits. Ecology 81:2241–2249

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Kersting DK, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:427–436

    Article  Google Scholar 

  • Kersting DK, Bensoussan N, Linares C (2013a) Long-term responses of the endemic reef-builder Cladocora caespitosa to Mediterranean warming. Plos One 8:e70820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kersting DK, Casado C, Lopez-Legentil S, Linares C (2013b) Unexpected patterns in the sexual reproduction of the Mediterranean scleractinian coral Cladocora caespitosa. Mar Ecol Prog Ser 486:165–171

    Article  Google Scholar 

  • Kersting DK, Ballesteros E, De Caralt S, Linares C (2014) Invasive macrophytes in a marine reserve (Columbretes Islands, NW Mediterranean): spread dynamics and interactions with the endemic scleractinian coral Cladocora caespitosa. Biol Inv. doi:10.1007/s10530-013-0594-9

    Google Scholar 

  • Kružić P, Benković L (2008) Bioconstructional features of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea (Croatia). Mar Ecol 29:125–139

    Article  Google Scholar 

  • Kružić P, Žuljević A, Nokolić V (2008) Spawning of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Southern Adriatic Sea. Coral Reefs 27:337–341

    Article  Google Scholar 

  • Linares C, Doak DF, Coma R, Diaz D, Zabala M (2007) Life history and viability of a long-lived marine invertebrate: The octocoral Paramuricea clavata. Ecology 88:918–928

    Article  PubMed  Google Scholar 

  • Linares C, Coma R, Garrabou J, Diaz D, Zabala M (2008) Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. J Appl Ecol 45:688–699

    Article  Google Scholar 

  • Polunin NVC (2008) Aquatic ecosystems: trends and global prospects. Cambridge University Press, Cambridge, UK p 482

    Book  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Ital J Zool 72:271–276

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Peirano A, Houlbrèque F, Abbate M, Ferrier-Pagès C (2008) Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 27:17–25

    Article  Google Scholar 

  • Salinas-de-Leon P, Dryden C, Smith D, Bell J (2013) Temporal and spatial variability in coral recruitment on two Indonesian coral reefs: consistently lower recruitment to a degraded reef. Mar Biol 160:97–105

    Article  Google Scholar 

  • Sammarco PW, Andrews JC (1988) Localized dispersal and recruitment in Great Barrier Reef corals: the Helix experiment. Science 239:1422–1424

    Article  CAS  PubMed  Google Scholar 

  • Schiller C (1993) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): I. Distribution and Biometry. Mar Ecol 14:205–219

    Article  Google Scholar 

  • Smith LD, Devlin M, Haynes D, Gilmour JP (2005) A demographic approach to monitoring the health of coral reefs. Mar Pollut Bull 51:399–407

    Article  CAS  PubMed  Google Scholar 

  • Teixidó N, Garrabou J, Harmelin JG (2011) Low Dynamics, High Longevity and Persistence of Sessile Structural Species Dwelling on Mediterranean Coralligenous Outcrops. Plos One 6: e23744–e23744

    Google Scholar 

  • Vermeij MJ, Sandin SA (2008) Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89:1994–2004

    Article  PubMed  Google Scholar 

  • Warner RR, Chesson PL (1985) Coexistence Mediated by Recruitment Fluctuations - A Field Guide to the Storage Effect. Am Nat 125:769–787

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed Effects Models and Extensions in Ecology with R. Springer pp 1–574

Download references

Acknowledgments

We acknowledge M. Zabala for continuous encouragement during this study and C. Casado for her assistance in the field. We thank the Secretaría General de Pesca (MAGRAMA) and the Columbretes Islands Marine Reserve staff for their logistic support. The study has been partially funded by the Spanish Ministry of Economy and Innovation through the Biorock Project (CTM2009–08045), the SMART Project (CGL2012-32194), a Ramón y Cajal contract to CL (RyC-2011-08134) and a Beatriu de Pinós contract to NT (2009-BP-B-00263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego K. Kersting.

Additional information

Communicated by Biology Editor Dr. Hugh Sweatman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kersting, D.K., Teixidó, N. & Linares, C. Recruitment and mortality of the temperate coral Cladocora caespitosa: implications for the recovery of endangered populations. Coral Reefs 33, 403–407 (2014). https://doi.org/10.1007/s00338-014-1144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1144-3

Keywords

Navigation