Abstract
Long-lived species are characterized by low recruitment and mortality. In these species, longevity buffers low recruitment, but when catastrophic disturbances alter mortality, recruitment becomes critical for population recovery. In this study, we assessed basic biological traits—recruitment, post-settlement growth, and the mortality of juvenile corals—and related these factors to the adult mortality of one of the most important populations of the Mediterranean reef-building coral Cladocora caespitosa over a period of 6 yr. Adult mortality and recruitment rates were low (~1 % and 0.30 recruits m−2 yr−1, respectively), whereas the juvenile colony mortality was comparatively high (29 % in the smallest size-class, <5 polyps). The low recruitment rates will hardly balance the recurrent climate-related mortality that has affected this population. Conservation plans and inclusion in the protection lists are urgently needed, given the escalating threats and slow dynamics of this species.
References
Adjeroud M, Penin L, Carroll A (2007) Spatio-temporal heterogeneity in coral recruitment around Moorea, French Polynesia: Implications for population maintenance. J Exp Mar Biol Ecol 341:204–218
Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER–E Ltd., Plymouth, United Kingdom
Ayre D, Hughes T (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590–1905
Bates D, Bolker B, Maechler M and Walker S (2013) Lme4: Linear mixed-effects models using Eigen and S4. R package. Version 1.0-4. Available at: http://cran.r-project.org/
Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833
Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:234–242
Coles SL, Brown EK (2007) Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai’i: the importance of recruitment. Coral Reefs 26:705–717
Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67:461–488
Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132
Edmunds PJ (2000) Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Mar Ecol Prog Ser 202:113–124
Garrabou J, Harmelin JG (2002) A 20-year study on life-history traits of a harvested long-lived temperate coral in the NW Mediterranean: insights into conservation and management needs. J Anim Ecol 71:966–978
Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Perez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biol 15:1090–1103
Glassom D, Chadwick N (2006) Recruitment, growth and mortality of juvenile corals at Eilat, northern Red Sea. Mar Ecol Prog Ser 318:111–122
Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 23:433–443
Guzner B, Novoplansky A, Chadwick N (2007) Population dynamics of the reef-building coral Acropora hemprichii as an indicator of reef condition. Mar Ecol Prog Ser 333:143–150
Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EM, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952
Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier Science, Amsterdam, pp 133–207
Hoegh-Guldberg O, Mumby P, Hooten A, Steneck R, Greenfield P, Gomez E, Harvell C, Sale P, Edwards A, Caldeira K, Knowlton N, Eakin C, Iglesias-Prieto R, Muthiga N, Bradbury R, Dubi A, Hatziolos M (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742
Hughes TP, Jackson JBC (1985) Population-Dynamics and Life Histories of Foliaceous Corals. Ecol Monogr 55:141–166
Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263
Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25(11):633–642
Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (1999) Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397:59–63
Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2000) Supply-side ecology works both ways: The link between benthic adults, fecundity, and larval recruits. Ecology 81:2241–2249
Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933
Kersting DK, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:427–436
Kersting DK, Bensoussan N, Linares C (2013a) Long-term responses of the endemic reef-builder Cladocora caespitosa to Mediterranean warming. Plos One 8:e70820
Kersting DK, Casado C, Lopez-Legentil S, Linares C (2013b) Unexpected patterns in the sexual reproduction of the Mediterranean scleractinian coral Cladocora caespitosa. Mar Ecol Prog Ser 486:165–171
Kersting DK, Ballesteros E, De Caralt S, Linares C (2014) Invasive macrophytes in a marine reserve (Columbretes Islands, NW Mediterranean): spread dynamics and interactions with the endemic scleractinian coral Cladocora caespitosa. Biol Inv. doi:10.1007/s10530-013-0594-9
Kružić P, Benković L (2008) Bioconstructional features of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea (Croatia). Mar Ecol 29:125–139
Kružić P, Žuljević A, Nokolić V (2008) Spawning of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Southern Adriatic Sea. Coral Reefs 27:337–341
Linares C, Doak DF, Coma R, Diaz D, Zabala M (2007) Life history and viability of a long-lived marine invertebrate: The octocoral Paramuricea clavata. Ecology 88:918–928
Linares C, Coma R, Garrabou J, Diaz D, Zabala M (2008) Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. J Appl Ecol 45:688–699
Polunin NVC (2008) Aquatic ecosystems: trends and global prospects. Cambridge University Press, Cambridge, UK p 482
R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Ital J Zool 72:271–276
Rodolfo-Metalpa R, Peirano A, Houlbrèque F, Abbate M, Ferrier-Pagès C (2008) Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 27:17–25
Salinas-de-Leon P, Dryden C, Smith D, Bell J (2013) Temporal and spatial variability in coral recruitment on two Indonesian coral reefs: consistently lower recruitment to a degraded reef. Mar Biol 160:97–105
Sammarco PW, Andrews JC (1988) Localized dispersal and recruitment in Great Barrier Reef corals: the Helix experiment. Science 239:1422–1424
Schiller C (1993) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): I. Distribution and Biometry. Mar Ecol 14:205–219
Smith LD, Devlin M, Haynes D, Gilmour JP (2005) A demographic approach to monitoring the health of coral reefs. Mar Pollut Bull 51:399–407
Teixidó N, Garrabou J, Harmelin JG (2011) Low Dynamics, High Longevity and Persistence of Sessile Structural Species Dwelling on Mediterranean Coralligenous Outcrops. Plos One 6: e23744–e23744
Vermeij MJ, Sandin SA (2008) Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89:1994–2004
Warner RR, Chesson PL (1985) Coexistence Mediated by Recruitment Fluctuations - A Field Guide to the Storage Effect. Am Nat 125:769–787
Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed Effects Models and Extensions in Ecology with R. Springer pp 1–574
Acknowledgments
We acknowledge M. Zabala for continuous encouragement during this study and C. Casado for her assistance in the field. We thank the Secretaría General de Pesca (MAGRAMA) and the Columbretes Islands Marine Reserve staff for their logistic support. The study has been partially funded by the Spanish Ministry of Economy and Innovation through the Biorock Project (CTM2009–08045), the SMART Project (CGL2012-32194), a Ramón y Cajal contract to CL (RyC-2011-08134) and a Beatriu de Pinós contract to NT (2009-BP-B-00263).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Biology Editor Dr. Hugh Sweatman
Rights and permissions
About this article
Cite this article
Kersting, D.K., Teixidó, N. & Linares, C. Recruitment and mortality of the temperate coral Cladocora caespitosa: implications for the recovery of endangered populations. Coral Reefs 33, 403–407 (2014). https://doi.org/10.1007/s00338-014-1144-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00338-014-1144-3