Skip to main content

Advertisement

Log in

Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

It is well established that different coral species have different susceptibilities to thermal stress, yet it is less clear which biological or physical mechanisms allow some corals to resist thermal stress, whereas other corals bleach and die. Although the type of symbiont is clearly of fundamental importance, many aspects of coral bleaching cannot be explained solely by differences in symbionts amongst coral species. Here, I use the CO2 (sink) limitation model of coral bleaching to repose various host traits believed to influence thermal tolerance (e.g. metabolic rates, colony tissue thickness, skeletal growth form, mucus production rates, tissue concentration of fluorescent pigments and heterotrophic feedings capacity) in terms of an integrated strategy to reduce the likelihood of CO2 limitation around its intracellular photosymbionts. Contrasting observational data for the skeletal vital effect on oxygen isotope composition (δ18O) partitions two alternate evolutionary strategies. The first strategy is heavily reliant on a sea water supply chain of CO2 to supplement respiratory CO2(met). In contrast, the alternate strategy is less reliant on the sea water supply source, potentially facilitated by increased basal respiration rates and/or a lower photosynthetic demand for CO2. The comparative vulnerability of these alternative strategies to modern ocean conditions is used to explain the global-wide observation that corals with branching morphologies (and thin tissue layers) are generally more thermally sensitive than corals with massive morphologies (and thick tissue layers). The life history implications of this new framework are discussed in terms of contrasting fitness drivers and past environmental constraints, which delivers ominous predictions for the viability of thin-tissued branching and plating species during the present human-dominated (“Anthropocene”) era of the Earth System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446

    Article  CAS  PubMed  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, De Beer D (2003a) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Biol Ecol 288:1–15

    Article  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, De Beer D (2003b) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral, Galaxea fascicularis. Mar Biol 142:419–426

    CAS  Google Scholar 

  • Al-Moghrabi S, Gorian C, Allemand D, Speziale N, Jaubert J (1996) Inorganic carbon uptake for photosynthesis by the symbiotic coral-dinoflagellate association II. Mechanisms for bicarbonate uptake. J Exp Mar Biol Ecol 199:227–248

    Article  CAS  Google Scholar 

  • Aronson RB, Macintyre IG, Wapnick CM, O’Neill MW (2004) Phase shifts, alternative states, and unprecedented convergence of two reef systems. Ecology 85:1876–1891

    Article  Google Scholar 

  • Baghooli R (2013) Inhibition of Calvin-Benson cycle suppresses the repair of Photosystem II in Symbiodinium: implications for coral bleaching. Hydrobiologia 714:183–190

    Article  Google Scholar 

  • Baird AH, Hughes TP (2000) Competitive dominance by tabular corals: an experimental analysis of recruitment and survival of understory assemblages. J Exp Mar Biol Ecol 251:117–132

    Article  PubMed  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc B 273:2305–2312

    Article  PubMed  Google Scholar 

  • Bertucci A, Moya A, Tambutte S, Allemand D, Supuran CT, Zoccola D (2013) Carbonic anhydrases in anthozoan corals – A review. Bioorg Med Chem 21:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:s129–s138

    Article  Google Scholar 

  • Buxton L, Badger M, Ralph P (2009) Effects of moderate heat stress and dissolved inorganic carbon concentration on photosynthesis and respiration of Symbiodinium sp. (Dinophyceae) in culture and symbiosis. J Phycol 45:357–365

    Article  CAS  Google Scholar 

  • Buxton L, Takahashi S, Hill R, Ralph PJ (2012) Variability in the primary site of photosynthesis damage in Symbiodinium sp. (Dinophyceae) exposed to thermal stress. J Phycol 48:117–126

    Article  CAS  Google Scholar 

  • Castillo KD, Helmuth BST (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Mar Biol 148:261–270

    Article  Google Scholar 

  • Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BEF, van Oppen MJH (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc Biol Sci 278:1840–1850

    Article  PubMed Central  PubMed  Google Scholar 

  • Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Global Change Biol 16:851–863

    Article  Google Scholar 

  • Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nature Climate Change 3:259–262

    Article  Google Scholar 

  • Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Cote IM (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378–1386

    Article  PubMed  Google Scholar 

  • Diamond JL, Holzman BJ, Bingham BL (2012) Thicker host tissues moderate light stress in a cnidarian endosymbiont. J Exp Biol 215:2247–2254

    Article  Google Scholar 

  • Edmunds PJ (2012) Effect of pCO2 on the growth, respiration, and photophysiology of massive Porites spp. in Moorea. French Polynesia. Mar Biol 159:2149–2160

    Article  CAS  Google Scholar 

  • Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Finelli CM, Helmuth BST, Pentcheff ND, Wethey DS (2006) Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25:47–57

    Article  Google Scholar 

  • Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110

    Article  Google Scholar 

  • Franklin DJ, Molina Cedrese CM, Hoegh-Guldberg O (2006) Increased mortality and photoinhibition in the symbiotic dinoflagellates of the Indo-Pacific coral Stylophora pistillata (Esper) after summer bleaching. Mar Biol 149:633–642

    Article  Google Scholar 

  • Furla P, Allemand D, Orsenigo MN (2000a) Involvement of H+-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis. Am J Physiol Regul Integr Comp Physiol 278:870–881

    Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000b) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  PubMed  Google Scholar 

  • Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization in tropical reef corals. Am Zool 39:30–43

    Google Scholar 

  • Gleason DF, Wellington GM (1993) Ultraviolet radiation and coral bleaching. Nature 365:836–838

    Article  Google Scholar 

  • Goiran C, Al-Moghrabi S, Allemand D, Jaubert J (1996) Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate. J Exp Mar Biol Ecol 199:207–225

    Article  CAS  Google Scholar 

  • Greenstein BJ, Curran A, Pandolfi JM (1998) Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a Pleistocene perspective. Coral Reefs 17:249–261

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Hennige SJ, Smith DJ, Walsh S, McGinley MP, Warner ME, Suggett DJ (2010) Acclimation and adaptation of scleractinian coral communities along environmental gradients within an Indonesian reef system. J Exp Mar Biol Ecol 391:143–152

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Nowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hongo C, Yamano H (2013) Species-specific responses of corals to bleaching event on anthropogenically turbid reefs on Okinawa Island, Japan, over a 15-year period (1995-2009). PLoS ONE 8(4):e60952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KG, Budd AF, Stemann TA (1995) Extinction selectivity and ecology of Neogene Caribbean corals. Paleobiology 21:52–73

    Google Scholar 

  • Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Scheiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Juillet-Leclerc A, Schmidt G (2001) A calibration of the oxygen isotope paleothermometer of coral aragonite from Porites. Geophys Res Lett 28:4135–4138

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Ove Hoegh-Guldberg, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceangr 48:2046–2054

    Article  Google Scholar 

  • Lane GA, Dole M (1956) Fractionation of oxygen isotopes during respiration. Science 123:574–576

    Article  CAS  PubMed  Google Scholar 

  • Lang J, Chornesky E (1990) Competition between scleractinian reef corals – a review of mechanisms and effects. In: Dubinsky Z (ed) Ecosystems of the World, Vol 25, Coral Reefs. Elsevier, Amsterdam, Netherlands, pp 133–207

  • Lang JC, Deslarzes KJP, Schmahl GP (2001) The Flower Garden Banks: Remarkable reefs in the NW Gulf of Mexico. Coral Reefs 20:126

    Article  Google Scholar 

  • Leggat W, Marendy EM, Baillie B, Whitney SM, Ludwig M, Badger MR, Yellowlees D (2002) Dinoflagellate symbioses: strategies and adaptations for the acquisition and fixation of inorganic carbon. Funct Plant Biol 29:309–322

    Article  CAS  Google Scholar 

  • Lesser MP (1996) Exposure of symbiotic dinoflagellates to elevated temperatures and ultraviolet radiation causes oxidative stress and inhibits photosynthesis. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Levas SJ, Grottoli AG, Hughes A, Osburn CL, Matsui Y (2013) Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals. PloS ONE 8:e63267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levy O, Dubinsky Z, Achituv Y, Erez J (2006) Diurnal polyp expansion behaviour in stony corals may enhance carbon availability for symbiont photosynthesis. J Exp Mar Biol Ecol 333:1–11

    Article  CAS  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Madin JS (2005) Mechanical limitations of reef corals during hydrodynamic disturbances. Coral Reefs 24:630–635

    Article  Google Scholar 

  • McClanahan TR (2004) The relationship between bleaching and mortality of common corals. Mar Biol 144:1239–1245

    Article  Google Scholar 

  • McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162

    CAS  Google Scholar 

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117

    Article  CAS  Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163

    Article  Google Scholar 

  • Mendes JM, Woodley JD (2002) Effect of the 1995-1996 bleaching event on polyp tissue depth, growth, reproduction, and skeletal band formation in Montastraea annularis. Mar Ecol Prog Ser 235:93–102

    Article  Google Scholar 

  • Montaggioni LF (2005) History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors. Earth Sci Rev 71:1–75

    Article  Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition: I. δ13C of zooxanthellae and animal tissue vs. depth. Mar Biol 100:185–193

    Article  Google Scholar 

  • Muscatine L, Ferrier-Pages C, Blackburn A, Gates RD, Baghdasarian G, Allemand D (1998) Cell-specific density of symbiotic dinoflagellates in tropical anthozoans. Coral Reefs 17:329–337

    Article  Google Scholar 

  • Nakamura T, van Woesik R, Yamasaki H (2005) Photoinhibition of photosynthesis is reduced by water flow in the reef-building coral Acropora digitifera. Mar Ecol Prog Ser 301:109–118

    Article  Google Scholar 

  • Pandolfi JM, Jackson JBC (2006) Ecological persistence interrupted in Caribbean coral reefs. Ecol Lett 9:818–826

    Article  PubMed  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  CAS  PubMed  Google Scholar 

  • Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef building corals. Am Nat 110:731–742

    Article  Google Scholar 

  • Reynaud-Vaganay S, Juillet-Leclerc A, Jaubert J, Gattuso J-P (2001) Effect of light on skeletal δ13C and δ18O, and interaction with photosynthesis, respiration and calcification in two zooxanthellate scleractinian corals. Palaeogeogr Palaeoclim Palaeoecol 175:393–404

    Article  Google Scholar 

  • Richman S, Loya Y, Slobodkin LB (1975) The rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnol Oeanogr 20:918–923

    Article  Google Scholar 

  • Rollion-Bard C, Blamart D, Cuif JP, Dauphin Y (2010) In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: Re-examination of the current geochemical models of biomineralization. Geochim Cosmochim Acta 74:1338–1349

    Article  CAS  Google Scholar 

  • Rowan R, Whitney SM, Fowler A, Yellowlees D (1996) Rubisco in marine symbiotic dinoflagellates: Form II enzyme in eukaryotic oxygenic phototrophs encoded by a nuclear encoded multigene family. Plant Cell 8:539–553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salih A, Hoegh-Guldberg O, Cox G (1998) Photoprotection of symbiotic dinoflagellates by fluorescent pigments in reef corals. In: Greenwood JG, Hall NJ (eds) Australian Coral Reef Society 75th Anniversary Conference. The Univ of Queensland, pp 217–230

  • Shyka TA, Sebens KP (2000) Community structure, water column nutrients, and water flow in two Pelican Cays ponds, Belize. Atoll Res Bull 471:105–121

    Article  Google Scholar 

  • Smith FA, Walker NA (1980) Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO -3 and to carbon isotopic discrimination. New Phytol 86:245–259

    Article  CAS  Google Scholar 

  • Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a Review. Earth Sci Rev 19:51–80

    Article  CAS  Google Scholar 

  • Tremblay P, Grover R, Maguer JF, Legendre L, Ferrier-Pagès C (2012) Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol 215:1384–1393

    Article  CAS  PubMed  Google Scholar 

  • Trench RK (1993) Microalgal-invertebrate symbioses: a review. Endocytobiosis and Cell Research 9:135–175

    Google Scholar 

  • Uchikawa J, Zeebe RE (2012) The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates. Geochim Cosmochim Acta 95:15–34

    Article  CAS  Google Scholar 

  • Ulstrup KE, Kühl M, van Oppen MJH, Cooper TF, Ralph PJ (2011) Variation in photosynthesis and respiration in geographically distinct populations of two reef-building coral species. Aquat Biol 12:241–248

    Article  Google Scholar 

  • van Woesik R, Franklin EC, O’Leary J, McClanahan TR, Klaus JS, Budd AF (2012) Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc R Soc B 279:2448–2456

    Article  PubMed  Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Nat Acad Sci USA 96:8007–8012

    Article  CAS  PubMed  Google Scholar 

  • Weber JN, Woodhead PMJ (1970) C and O isotope fractionation in the skeletal carbonate of reef-building corals. Chem Geol 6:93–117

    Article  CAS  Google Scholar 

  • Weber JN, Woodhead PMJ (1972a) Temperature dependence of oxygen-18 concentration in reef coral carbonates. J Geophys Res 77:463–473

    Article  CAS  Google Scholar 

  • Weber JN, Woodhead PMJ (1972b) Stable isotope ratio variations in non-scleractinian coelenterate carbonates as a function of temperature. Mar Biol 15:293–297

    Article  CAS  Google Scholar 

  • Weis VM, Smith GJ, Muscatine L (1989) A “CO2 supply” mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Mar Biol 100:195–202

    Article  CAS  Google Scholar 

  • Wells JW (1959) Notes on Indo-Pacific Scleractinian corals parts I and II: part I. Oryzotrochus, a new genus of Turbinolian coral. Pac Sci 13:286–290

    Google Scholar 

  • Woods R (1999) Reef evolution. Oxford Univ Press, New York, USA

    Google Scholar 

  • Wooldridge SA (2009a) A new conceptual model for the warm-water breakdown of the coral-algae endosymbiosis. Mar Freshw Res 60:483–496

    Article  CAS  Google Scholar 

  • Wooldridge SA (2009b) A new conceptual model for the enhanced release of mucus in symbiotic reef corals during ‘bleaching’ conditions. Mar Ecol Prog Ser 396:145–152

    Article  CAS  Google Scholar 

  • Wooldridge SA (2010) Is the coral-algae symbiosis really mutually-beneficial for the partners? BioEssays 32:615–625

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge SA (2012) A hypothesis linking sub-optimal seawater pCO2 conditions for cnidarians-Symbiodinium symbioses with the exceedence of the interglacial threshold (> 260 ppmv). Biogeosciences 9:1709–1723

    Article  CAS  Google Scholar 

  • Wooldridge SA (2013a) Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10:1647–1658

    Article  Google Scholar 

  • Wooldridge SA (2013b) A new conceptual model of coral biomineralisation: hypoxia as the physiological driver of skeletal extension. Biogeosciences 10:2867–2884

    Article  Google Scholar 

  • Yee SH, Santavy DL, Barron MG (2008) Comparing environmental influences on coral bleaching across and within species using clustered binomial regression. Ecol Model 24:162–174

    Article  Google Scholar 

  • Yellowlees D, Rees TA, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr Christine Ferrier-Pages (Centre Scientifique de Monaco) for providing access to the CSD density data displayed in Fig. 6. The paper benefited from the comments and suggestions of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Wooldridge.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wooldridge, S.A. Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host. Coral Reefs 33, 15–27 (2014). https://doi.org/10.1007/s00338-013-1111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-013-1111-4

Keywords

Navigation