Coral Reefs

, Volume 33, Issue 1, pp 1–13 | Cite as

Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata

  • P. TremblayEmail author
  • R. Grover
  • J. F. Maguer
  • M. Hoogenboom
  • C. Ferrier-Pagès


Reef-building corals live in symbiosis with dinoflagellates that translocate a large proportion of their photosynthetically fixed carbon compounds to their coral host for its own metabolism. The carbon budget and translocation rate, however, vary depending on environmental conditions, coral host species, and symbiont clade. To quantify variability in carbon translocation in response to environmental conditions, this study assessed the effect of two different irradiance levels (120 and 250 μmol photons m−2 s−1) and feeding regimes (fed with Artemia salina nauplii and unfed) on the carbon budget of the tropical coral Stylophora pistillata. For this purpose, H13CO3 -enriched seawater was used to trace the conversion of photosynthetic carbon into symbiont and coral biomass and excrete particulate organic carbon. Results showed that carbon translocation (ca. 78 %) and utilization were similar under both irradiance levels for unfed colonies. In contrast, carbon utilization by fed colonies was dependent on the growth irradiance. Under low irradiance, heterotrophy was accompanied by lower carbon translocation (71 %), higher host and symbiont biomass, and higher calcification rates. Under high irradiance, heterotrophy was accompanied by higher rates of photosynthesis, respiration, and carbon translocation (90 %) as well as higher host biomass. Hence, levels of resource sharing within coral–dinoflagellate symbioses depend critically on environmental conditions.


Coral Autotrophy Photosynthate translocation Heterotrophy Irradiance 



We thank Cécile Rottier and Séverine Sikorski for laboratory assistance and Prof. Denis Allemand, Director of the Centre Scientifique de Monaco (CSM), for scientific support. We also thank Dr. Sylvie Tambutté for fruitful discussion on light-enhanced calcification as well as two anonymous reviewers for helpful comments. Funding was provided by the CSM, the Institut Universitaire Européen de la Mer, and the Natural Sciences and Engineering Research Council of Canada (Grant # ES D3—378797—2009 to PT).


  1. Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Heidelberg, pp 119–150CrossRefGoogle Scholar
  2. Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energy budgets at variable turbidity. J Exp Mar Biol Ecol 252:221–253PubMedCrossRefGoogle Scholar
  3. Anthony KRN, Hoegh-Guldberg O (2003) Kinetics of photoacclimation in corals. Oecologia 134:23–31PubMedCrossRefGoogle Scholar
  4. Anthony KRN, Connolly SR, Willis BL (2002) Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr 47:1417–1429CrossRefGoogle Scholar
  5. Bachar A, Achituv Y, Pasternak Z, Dubinsky Z (2007) Autotrophy versus heterotrophy: the origin of carbon determines its fate in a symbiotic sea anemone. J Exp Mar Biol Ecol 349:295–298CrossRefGoogle Scholar
  6. Burriesci MS, Raab TK, Pringle JR (2012) Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol 215:3467–3477PubMedCrossRefGoogle Scholar
  7. Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907CrossRefGoogle Scholar
  8. Crossland CJ (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42CrossRefGoogle Scholar
  9. Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395CrossRefGoogle Scholar
  10. Davies PS (1991) Effects of daylight variations on the energy budgets of shallow-water corals. Mar Biol 108:137–144CrossRefGoogle Scholar
  11. Davy SK, Cook CB (2001) The relationship between nutritional status and carbon flux in the zooxanthellate sea anemone Aiptasia pallida. Mar Biol 139:999–1005CrossRefGoogle Scholar
  12. Davy SK, Lucas IAN, Turner JR (1996) Carbon budgets in temperate anthozoan-dinoflagellate symbioses. Mar Biol 126:773–783CrossRefGoogle Scholar
  13. Dubinsky Z, Jokiel P (1994) Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48:313–324Google Scholar
  14. Dubinsky Z, Falkowski PG, Porter JW, Muscatine L (1984) Absorption and utilization of radiant energy by light- and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proc R Soc Lond B 222:203–214CrossRefGoogle Scholar
  15. Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410CrossRefGoogle Scholar
  16. Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174CrossRefGoogle Scholar
  17. Erez J (1978) Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature 273:199–202CrossRefGoogle Scholar
  18. Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the gulf of Eilat. Nature 289:172–174CrossRefGoogle Scholar
  19. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709CrossRefGoogle Scholar
  20. Ferrier-Pagès C, Hoogenboom M, Houlbrèque F (2011) The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Heidelberg, pp 215–229CrossRefGoogle Scholar
  21. Ferrier-Pagès C, Rottier C, Béraud É, Levy O (2010) Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J Exp Mar Biol Ecol 390:118–124CrossRefGoogle Scholar
  22. Ferrier-Pagès C, Witting J, Tambutté É, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240CrossRefGoogle Scholar
  23. Ferrier-Pagès C, Gattuso JP, Cauwet G, Jaubert J, Allemand D (1998) Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Prog Ser 172:265–274CrossRefGoogle Scholar
  24. Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457PubMedGoogle Scholar
  25. Gattuso J-P, Jaubert J (1990) Effect of light on oxygen and carbon dioxide fluxes and on metabolic quotients measured in situ in a zooxanthellate coral. Limnol Oceanogr 35:1796–1804CrossRefGoogle Scholar
  26. Gattuso JP, Yellowlees D, Lesser M (1993) Depth- and light-dependent variation of carbon partitioning and utilization in the zooxanthellate scleractinian coral Stylophora pistillata. Mar Ecol Prog Ser 92:267–276CrossRefGoogle Scholar
  27. Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189PubMedCrossRefGoogle Scholar
  28. Grover R, Maguer JF, Reynaud-Vaganay S, Ferrier-Pagès C (2002) Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol Oceanogr 47:782–790CrossRefGoogle Scholar
  29. Hoogenboom MO, Connolly SR (2009) Defining fundamental niche dimensions of corals: synergistic effects of colony size, light, and flow. Ecology 90:767–780PubMedCrossRefGoogle Scholar
  30. Hoogenboom MO, Anthony KRN, Connolly SR (2006) Energetic cost of photoinhibition in corals. Mar Ecol Prog Ser 313:1–12CrossRefGoogle Scholar
  31. Hoogenboom M, Rodolfo-Metalpa R, Ferrier-Pagès C (2010a) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J Exp Biol 213:2399–2409PubMedCrossRefGoogle Scholar
  32. Hoogenboom M, Béraud É, Ferrier-Pagès C (2010b) Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29:21–29CrossRefGoogle Scholar
  33. Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17PubMedCrossRefGoogle Scholar
  34. Houlbrèque F, Tambutté É, Ferrier-Pagès C (2003) Effects of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 269:145–166CrossRefGoogle Scholar
  35. Houlbrèque F, Tambutté É, Richard C, Ferrier-Pagès C (2004) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160CrossRefGoogle Scholar
  36. Hughes AD, Grottoli AG, Pease TK, Matsui Y (2010) Acquisition and assimilation of carbon in non-bleached and bleached corals. Mar Ecol Prog Ser 420:91–101CrossRefGoogle Scholar
  37. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194Google Scholar
  38. Jokiel RL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. Monogr Oceanogr Methodol (UNESCO) 5:529–542Google Scholar
  39. Kazandjian A, Shepherd VA, Rodriguez-Lanetty M, Nordemeier W, Larkum AWD, Quinnell RG (2008) Isolation of symbiosomes and the symbiosome membrane complex from the zoanthid Zoanthus robustus. Phycologia 47:294–306CrossRefGoogle Scholar
  40. Leggat W, Rees TAV, Yellowlees D (2000) Meeting the photosynthetic demand for inorganic carbon in an alga-invertebrate association: preferential use of CO2 by symbionts in the giant clam Tridacna gigas. Proc R Soc Lond B 267:523–529CrossRefGoogle Scholar
  41. Loram JE, Trapido-Rosenthal HG, Douglas AE (2007) Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol Ecol 16:4849–4857PubMedCrossRefGoogle Scholar
  42. Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102CrossRefGoogle Scholar
  43. McCloskey LR, Muscatine L (1984) Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth. Proc R Soc Lond B 222:215–230CrossRefGoogle Scholar
  44. Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611CrossRefGoogle Scholar
  45. Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. I. δ13C of zooxanthellae and animal tissue versus depth. Mar Biol 100:185–193CrossRefGoogle Scholar
  46. Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B 222:181–202CrossRefGoogle Scholar
  47. Naumann MS, Haas A, Struck U, Mayr C, el-Zibdah M, Wild C (2010) Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29:649–659CrossRefGoogle Scholar
  48. Palardy JE, Grottoli AG, Matthews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. J Exp Mar Biol Ecol 331:99–107CrossRefGoogle Scholar
  49. Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363CrossRefGoogle Scholar
  50. Rodolfo-Metalpa R, Peirano A, Houlbrèque F, Abbate M, Ferrier-Pagès C (2008) Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 27:17–25CrossRefGoogle Scholar
  51. Smith PK, Khrohn RI, Hermanson GT, Malia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  52. Stambler N (1998) Effects of light intensity and ammonium enrichment on the hermatypic coral Stylophora pistillata and its zooxanthellae. Symbiosis 24:127–146Google Scholar
  53. Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74CrossRefGoogle Scholar
  54. Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté É, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408:58–78CrossRefGoogle Scholar
  55. Tremblay P, Peirano A, Ferrier-Pagès C (2011) Heterotrophy in the Mediterranean symbiotic coral Cladocora caespitosa: comparison with two other scleractinian species. Mar Ecol Prog Ser 422:165–177CrossRefGoogle Scholar
  56. Tremblay P, Grover R, Maguer JF, Legendre L, Ferrier-Pagès C (2012a) Autotrophic carbon budget in the coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol 215:1384–1393PubMedCrossRefGoogle Scholar
  57. Tremblay P, Fine M, Maguer JF, Grover R, Ferrier-Pagès C (2013) Photosynthate translocation increases in response to low seawater pH in a coral–dinoflagellates symbiosis. Biogeosciences 10:3997–4007CrossRefGoogle Scholar
  58. Tremblay P, Ferrier-Pagès C, Maguer JF, Rottier C, Legendre L, Grover R (2012b) Controlling effects of irradiance and heterotrophy on carbon translocation in the temperate coral Cladocora caespitosa. PLoS ONE 7:e44672PubMedCentralPubMedCrossRefGoogle Scholar
  59. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  60. Whitehead LF, Douglas AE (2003) Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. J Exp Biol 206:3149–3157PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Tremblay
    • 1
    • 2
    • 3
    Email author
  • R. Grover
    • 1
    • 2
  • J. F. Maguer
    • 4
  • M. Hoogenboom
    • 5
  • C. Ferrier-Pagès
    • 1
    • 2
  1. 1.Centre Scientifique de MonacoMonacoMonaco
  2. 2.LEA CSM-CNRS “BIOSENSIB”MonacoMonaco
  3. 3.Département de biologie, chimie et géographieUniversité du Québec à RimouskiRimouskiCanada
  4. 4.LEMAR, UMR 6539 UBO/CNRS/IRDInstitut Universitaire Européen de la MerPlouzanéFrance
  5. 5.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia

Personalised recommendations