Skip to main content
Log in

Cleaning up the biogeography of Labroides dimidiatus using phylogenetics and morphometrics

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Cleaner fishes are some of the most conspicuous organisms on coral reefs due to their behaviour and prominent body pattern, consisting of a lateral stripe and blue/yellow colouration. All obligate cleaner fishes share this body stripe pattern, which is an important signal for attracting client fishes. However, variability in the cleaning signal of the cleaner fish Labroides dimidiatus has been documented across its range. Here, we investigate the geographic distribution of cleaner signal polymorphisms in L. dimidiatus and contrast this to phylogeographic variation in mitochondrial (mt) DNA. We used samples from 12 sites for genetic analyses, encompassing much of L. dimidiatus’ range from the Red Sea to Fiji. We obtained morphometric measures of the cleaner signal body stripe width from individuals among six of the sites and qualitatively grouped tail stripe shape. mtDNA control region sequences were used for phylogenetic and population genetic analyses. We found that body stripe width was significantly correlated with tail stripe shape and geographical location, with Indian Ocean populations differing in morphology from western Pacific populations. L. dimidiatus haplotypes formed two reciprocally monophyletic clades, although in contrast to morphology, Japanese cleaner fish fell within the same clade as Indian Ocean cleaner fish and both clade types were sympatric in Papua New Guinea. An additional novel finding of our research was that the inclusion of two closely related cleaner fish species, Labroides pectoralis and Labroides bicolor, in the phylogenetic analysis rendered L. dimidiatus polyphyletic. Overall, the findings suggest the diversity within L. dimidiatus is underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image Processing with ImageJ. Biophotonics International 11:36–42

    Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for Homogeneity of Multivariate Dispersion. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2002) Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Mol Ecol 11:659–674

    Article  CAS  PubMed  Google Scholar 

  • Barber PH, Erdmann MV, Palumbi SR (2006) Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the Coral Triangle. Evolution 60:1825–1839

    PubMed  Google Scholar 

  • Bay LK, Choat JH, van Herwerden L, Robertson DR (2004) High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past? Mar Biol 144:757–767

    Article  CAS  Google Scholar 

  • Beebee T, Rowe G (2004) An introduction to molecular ecology. Oxford University Press, Oxford

    Google Scholar 

  • Bernardi G, Holbrook SJ, Schmitt RJ, Crane NL, DeMartini E (2002) Species boundaries, populations and colour morphs in the coral reef three-spot damselfish (Dascyllus trimaculatus) species complex. Proc R Soc Lond B Biol Sci 269:599–605

    Article  Google Scholar 

  • Bshary R (2003) The cleaner wrasse, Labroides dimidiatus, is a key organism for reef fish diversity at Ras Mohammed National Park. Egypt. J Anim Ecol 72:169–176

    Article  Google Scholar 

  • Carpenter KE, Barber PH, Crandall ED, Ablan-Lagman MCA, Ambariyanto, Mahardika GN, Manjaji-Matsumoto, Juinio-Meñez MA, Santos MD, Starger CJ, Toha AHA (2011) Comparative phylogeography of the Coral Triangle and implications for marine management. J Mar Biol 2011:396982 [doi:10.1155/2011/396982]

  • Cheney KL, Grutter AS, Blomberg SP, Marshall NJ (2009) Blue and yellow signal cleaning behavior in coral reef fishes. Curr Biol 19:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Corporation CodonCode (2009) CodonCode Aligner. CodonCode Corporation, Dedham

    Google Scholar 

  • Côté IM (2000) Evolution and ecology of cleaning symbioses in the sea. Oceanogr Mar Biol Annu Rev 38:311–355

    Google Scholar 

  • Cowman PF, Bellwood DR, van Herwerden L (2009) Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs. Mol Phylogenet Evol 52:621–631

    Article  CAS  PubMed  Google Scholar 

  • Crandall ED, Frey MA, Grosberg RK, Baack EJ, Barber PH (2008a) Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Mol Ecol 17:611–626

    Article  PubMed  Google Scholar 

  • Crandall ED, Jones ME, Muñoz MM, Akinbronbi B, Erdmann MV, Barber PH (2008b) Comparative phylogeography of two seastars and their ectosymbionts within the Coral Triangle. Mol Ecol 17:5276–5290

    Article  PubMed  Google Scholar 

  • DeBoer TS, Subia MD, Anto A, Erdmann MV, Kovitvongsa K, Barber PH (2008) Phylogeography and limited genetic connectivity in the endangered boring giant clam across the Coral Triangle. Conserv Biol 22:1255–1266

    Article  PubMed  Google Scholar 

  • DiBattista JD, Waldrop E, Bowen BW, Schultz JK, Gaither MR, Pyle RL, Rocha LA (2012) Twisted sister species of pygmy angelfishes: discordance between taxonomy, coloration, and phylogenetics. Coral Reefs 31:839–851

    Article  Google Scholar 

  • Drew JA, Barber PH (2009) Sequential cladogenesis of Pomacentrus moluccensis (Bleeker, 1853) supports the peripheral origin of marine biodiversity in the Indo-Australian Archipelago. Mol Phylogenet Evol 53:335–339

    Article  CAS  PubMed  Google Scholar 

  • Drew J, Allen GR, Kaufman L, Barber PH (2008) Endemism and regional color and genetic differences in five putatively cosmopolitan reef fishes. Conserv Biol 22:965–975

    Article  PubMed  Google Scholar 

  • Drew J, Allen GR, Erdmann MV (2010) Congruence between mitochondrial genes and color morphs in a coral reef fish: population variability in the Indo-Pacific damselfish Chrysiptera rex (Snyder, 1909). Coral Reefs 29:439–444

    Article  Google Scholar 

  • Everitt B (2005) An R and S-PLUS companion to Multivariate Analysis. Springer, London

    Book  Google Scholar 

  • Excoffier L, Laval LG, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Feder HM (1966) Cleaning symbiosis in the marine environment. In: Henry SM (ed) Symbiosis. Academic Press, New York, pp 327–380

    Google Scholar 

  • Feldman CR, Spicer GS (2006) Comparative phylogeography of woodland reptiles in California: repeated patterns of cladogenesis and population expansion. Mol Ecol 15:2201–2222

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  • Gaither MR, Rocha LA (2013) Origins of species richness in the Indo-Malay-Philippine biodiversity hotspot: evidence for the centre of overlap hypothesis. J Biogeogr 40:1638–1648

    Article  Google Scholar 

  • Gaither MR, Bowen BW, Bordenave TR, Rocha LA, Newman SJ, Gomez JA, van Herwerden L, Craig MT (2011) Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the Indo-Pacific barrier with contemporary overlap in the coral triangle. BMC Evol Biol 11:189

    Article  PubMed Central  PubMed  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Google Scholar 

  • Grutter AS (1997) Spatiotemporal variation and feeding selectivity in the diet of the cleaner fish Labroides dimidiatus. Copeia 1997:346–355

    Article  Google Scholar 

  • Grutter AS (1999) Cleaner fish really do clean. Nature 398:672–673

    Article  CAS  Google Scholar 

  • Grutter AS, Murphy JM, Choat JH (2003) Cleaner fish drives local fish diversity on coral reefs. Curr Biol 13:64–67

    Article  CAS  PubMed  Google Scholar 

  • Hull JM, Savage WK, Bollmer JL, Kimball RT, Parker PG, Whiteman NK, Ernest HB (2008) On the origin of the Galápagos hawk: an examination of phenotypic differentiation and mitochondrial paraphyly. Biol J Linn Soc 95:779–789

    Article  Google Scholar 

  • Johnson DE (1998) Applied multivariate methods for data analysts. Duxbury Press, Pacific Grove

    Google Scholar 

  • Kochzius M, Seidel C, Hauschild J, Kirchhoff S, Mester P, Meyer-Wachsmuth I, Nuryanto A et al (2009) Genetic population structures of the blue starfish Linckia laevigata and its gastropod ectoparasite Thyca crystallina. Mar Ecol Prog Ser 396:211–219

    Article  CAS  Google Scholar 

  • Kuwamura T (1981) Life history and population fluctuation in the labrid fish, Labroides dimidiatus, near the northern limit of its range. Publ Seto Mar Biol Lab 29:117–177

    Google Scholar 

  • Lee W-J, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66

    Article  CAS  PubMed  Google Scholar 

  • Lettieri L, Cheney KL, Mazel CH, Boothe D, Marshall NJ, Streelman JT (2009) Cleaner gobies evolve advertising stripes of higher contrast. J Exp Biol 212:2194–2203

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Marshall NJ, Vorobyev M (2003) The design of colour signals and colour vision in fishes. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer-Verlag, New York, pp 194–222

    Chapter  Google Scholar 

  • McMillan WO, Weigt LA, Palumbi SR (1999) Color pattern evolution, assortative mating, and genetic differentiation in brightly colored butterflyfishes (Chaetodontidae). Evolution 53:247–260

    Article  Google Scholar 

  • Messmer V, van Herwerden L, Munday PL, Jones GP (2005) Phylogeography of colour polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef. Coral Reefs 24:392–402

    Article  Google Scholar 

  • Mulcahy DG (2008) Phylogeography and species boundaries of the western North American Nightsnake (Hypsiglena torquata): revisiting the subspecies concept. Mol Phylogenet Evol 46:1095–1115

    Article  CAS  PubMed  Google Scholar 

  • Nuryanto A, Kochzius M (2009) Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima. Coral Reefs 28:607–619

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1252–1256

    Article  Google Scholar 

  • R D Core Team (2011) R: A language and environment for statistical computing, Vienna

  • Rambaut A (1996) Se-Al. Sequence Alignment Editor Copyright 1996 – 2002 Supported by The Royal Society and Wellcome Trust (grant 50275)

  • Randall JE (1958) A review of the labrid fish genus Labroides, with descriptions of two new species and notes on ecology. Pac Sci 12:327–347

    Google Scholar 

  • Randall JE, Allen GR, Steene RC (1997) Fishes of the Great Barrier Reef and Coral Sea. University of Hawai’i Press, Honolulu

    Google Scholar 

  • Rocha LA (2004) Mitochondrial DNA and color pattern variation in three western Atlantic Halichoeres (labridae), with the revalidation of two species. Copeia 4:770–782

    Article  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc Biol Sci Ser B 272:573–579

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Runemark A, Hansson B, Pafilis P, Valakos ED, Svensson EI (2010) Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence? BMC Evol Biol 10:269

    Article  PubMed Central  PubMed  Google Scholar 

  • Stummer LE, Weller JA, Johnson ML, Côté IM (2004) Size and stripes: how fish clients recognize cleaners. Anim Behav 68:145–150

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  CAS  PubMed  Google Scholar 

  • Victor BC (1986) Duration of the planktonic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae). Mar Biol 90:317–326

    Article  Google Scholar 

  • Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167

    Article  Google Scholar 

  • Waldie PA, Blomberg SP, Cheney KL, Goldizen AW, Grutter AS (2011) Long-term effects of the cleaner fish Labroides dimidiatus on coral reef fish communities. PLoS ONE 6:e21201 [doi:10.1371/journal.pone.0021201]

  • Warner RR (1997) Evolutionary ecology: how to reconcile pelagic dispersal with local adaptation. Coral Reefs 16:S115–S120

    Article  Google Scholar 

  • Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol 36:370–390

    Article  PubMed  Google Scholar 

  • Wright S (1942) Isolation by distance. Genetics 28:114–138

    Google Scholar 

Download references

Acknowledgments

ASG and CR were funded by the Australian Research Council and The University of Queensland. JAD was supported by the National Science Foundation, JD and CT MacArthur Foundation of the Encyclopaedia of Life and Columbia University. For specimen collections and data, we thank JH Choat, R Robertson, L van Herwerden, A Anderson, MA Johnson, M Gauthier and N Okuda, as well as many other volunteers and research assistants for help with the collection of fish. We thank the Coral Reef Ecology and Ecological and Evolutionary Genetics Laboratories for helpful discussions and laboratory support. CAS thanks C Mills for the title and S Calandra for continued support and advice. The authors would also like to thank two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Sims.

Additional information

Communicated by Biology Editor Dr. Stephen Swearer

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sims, C.A., Riginos, C., Blomberg, S.P. et al. Cleaning up the biogeography of Labroides dimidiatus using phylogenetics and morphometrics. Coral Reefs 33, 223–233 (2014). https://doi.org/10.1007/s00338-013-1093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-013-1093-2

Keywords

Navigation