Coral Reefs

, Volume 32, Issue 3, pp 749–754 | Cite as

High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria

  • M. S. NaumannEmail author
  • C. Orejas
  • C. Ferrier-Pagès


In the Mediterranean deep-sea, scleractinian cold-water corals (CWC) are observed to survive at the uppermost end of their presumed thermal distribution range (4–13 °C). Here, we show that 2 common CWC species (i.e. Dendrophyllia cornigera and Desmophyllum dianthus) maintained in aquaria can indeed tolerate considerably elevated seawater temperatures (17.5 ± 0.1 °C), while growing at similar (D. dianthus) or significantly higher (D. cornigera) rates than conspecifics cultured in parallel for 87 days at ambient Mediterranean deep-sea temperature (12.5 ± 0.1 °C). Neither differences in coral appearance nor mortality were evident for both species at either temperature. D. dianthus grew significantly faster (0.23 ± 0.08 % day−1) than D. cornigera (0.05 ± 0.01 % day−1) under ambient thermal conditions. Growth of D. cornigera increased significantly (0.14 ± 0.07 % day−1) at elevated temperature, while Desmophyllum dianthus growth showed no significant difference under both conditions. These findings suggest that D. dianthus and D. cornigera may be capable of surviving in warmer environments than previously reported, and thus challenge temperature as the paramount limiting environmental factor for the occurrence of some CWC species.


Desmophyllum dianthus Dendrophyllia cornigera Temperature Growth Calcification Scleractinia 



This research was supported by the Prince Albert II Foundation (COMP project), the government of the Principality of Monaco, the European Project HERMIONE (Grant Agreement Number 226354) and the Spanish Project DEEP CORAL (CTM2005-07756-C02-02/MAR). We are grateful to A. Sygut, P. Gilles, P. Letournel and the aquarium team (Musée Océanographic de Monaco), A. Gori, C. Rottier and S. Sikorski (Centre Scientifique de Monaco), B. Vendrell (ICM, CSIC), M. Taviani (ISMAR-CNR) and the crews of RVs ‘García del Cid’, ‘Urania’ and the ‘JAGO-Team’ (IFM-GEOMAR) for technical and logistical support. We thank the topic editor Dr. A. Banaszak and two anonymous reviewers for their help in improving the manuscript.


  1. Adkins JF, Henderson GM, Wang SL, O’Shea S, Mokadem F (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227:481–490CrossRefGoogle Scholar
  2. Allemand D, Tambutté E, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Heidelberg, pp 119–150CrossRefGoogle Scholar
  3. Baker KD, Wareham VE, Snelgrove PVR, Haedrich RL, Fifield DA, Edinger EN, Gilkinson KD (2012) Distributional patterns of deep-sea coral assemblages in three submarine canyons off Newfoundland, Canada. Mar Ecol Prog Ser 445:235–249CrossRefGoogle Scholar
  4. Barnes DJ, Devereux MJ (1988) Variations in skeletal architecture associated with density banding in the hard corals Porites. J Exp Mar Biol Ecol 121:37–54CrossRefGoogle Scholar
  5. Cairns SD (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81:311–322Google Scholar
  6. Cairns SD (2009) On line appendix: Phylogenetic list of the 711 valid recent azooxanthellate scleractinian species with their junior synonyms and depth ranges. In: Roberts JM, Wheeler A, Freiwald A, Cairns S (eds) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge, p 28Google Scholar
  7. Canals M, Puig P, Durrieu de Madron X, Heussner S, Palanques A, Fabres J (2006) Flushing submarine canyons. Nature 444:354–357PubMedCrossRefGoogle Scholar
  8. Castric-Fey A (1996) The scleractinian Dendrophyllia cornigera in shallow water, at Ushant (Brittany, NE Atlantic), related to the absence of a thermic barrier. Oceanol Acta 19:665–671Google Scholar
  9. Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395CrossRefGoogle Scholar
  10. Dodds LA, Black KD, Orr H, Roberts JM (2009) Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar Ecol Prog Ser 397:113–124CrossRefGoogle Scholar
  11. Dullo WC, Flögel S, Rüggeberg A (2008) Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar Ecol Prog Ser 371:165–176CrossRefGoogle Scholar
  12. Försterra G, Häussermann V (2003) First report on large scleractinian (Cnidaria: anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool Verh Leiden 345:117–128Google Scholar
  13. Försterra G, Beuck L, Häussermann V, Freiwald A (2005) Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A, Roberts JM (eds) Cold water corals and ecosystems. Springer, Berlin, pp 937–977CrossRefGoogle Scholar
  14. Frederiksen R, Jensen A, Westerberg H (1992) The distribution of the scleractinian coral Lophelia pertusa around the Faroe Islands and the relation to internal tidal mixing. Sarsia 77:157–171Google Scholar
  15. Freiwald A, Fossa JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water coral reefs. UNEP-WCMC, CambridgeGoogle Scholar
  16. Freiwald A, Beuck L, Rüggeberg A, Taviani M, Hebbeln D (2009) The white coral community in the central Mediterranean Sea revealed by ROV surveys. Oceanography 22:58–74CrossRefGoogle Scholar
  17. Guinotte JM, Orr J, Cairns SD, Freiwald A, Morgan L, George R (2006) Climate change and deep-sea corals: will chemical and physical changes in the world’s oceans alter the distribution of deep-sea bioherm-forming scleractinians? Front Ecol Environ 3:141–146CrossRefGoogle Scholar
  18. Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81CrossRefGoogle Scholar
  19. Jacques TG, Marshall N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae II. Effect of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification. Mar Biol 76:135–148CrossRefGoogle Scholar
  20. Johannes RE, Wiebe WJ, Crossland CJ, Rimmerl DW, Smith SV (1983) Latitudinal limits of coral reef growth. Mar Ecol Prog Ser 11:105–111CrossRefGoogle Scholar
  21. Le Danois E (1948) Les profondeurs de la mer. Payot, Paris, p 303Google Scholar
  22. Maier C, Hegeman J, Weinbauer MG, Gattuso JP (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1875–1901CrossRefGoogle Scholar
  23. Maier C, Watremez P, Taviani M, Weinbauer MG, Gattuso JP (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc R Soc Biol Sci 279:1716–1723CrossRefGoogle Scholar
  24. Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224Google Scholar
  25. McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra N, Correa ML, Maier C, Ruggeberg A, Taviani M (2012) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34CrossRefGoogle Scholar
  26. Mienis F, de Stigter HC, White M, Duineveld G, de Haas H, van Weering TCE (2007) Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep Sea Res 54:1655–1674CrossRefGoogle Scholar
  27. Miller MW (1995) Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. Mar Ecol Prog Ser 122:217–225CrossRefGoogle Scholar
  28. Naumann MS, Orejas C, Wild C, Ferrier-Pagès C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576PubMedCrossRefGoogle Scholar
  29. Orejas C, Gori A, Lo Iacono C, Puig P, Gili JM, Dale MRT (2009) Cold-water corals in the Cap de Creus canyon, north-western Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Prog Ser 397:37–51CrossRefGoogle Scholar
  30. Orejas C, Ferrier-Pagès C, Reynaud S, Gori A, Beraud E, Tsounis G, Allemand D, Gili JM (2011) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Prog Ser 429:57–65CrossRefGoogle Scholar
  31. Palanques A, Durrieu de Madron X, Puig P, Fabres J, Guillén J, Calafat A, Canals M, Heussener S, Bonnin J (2006) Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading. Mar Geol 234:43–61CrossRefGoogle Scholar
  32. Pérès JM, Piccard J (1964) Nouveau manuel de bionomie benthique de la mer Mediterranée. Recl Trav Stn Mar Endoume 31:1–137Google Scholar
  33. Purser A, Larsson AI, Thomsen L, van Oevelen D (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J Exp Mar Biol Ecol 395:55–62CrossRefGoogle Scholar
  34. Reed JK (1981) In situ growth rates of the scleractinian coral Oculina varicosa occurring with zooxanthellae on 6 m reef and without on 80 m banks. Proc 4th Int Coral Reef Symp 2:201–206Google Scholar
  35. Risk MJ, Heikoop JM, Snow MG, Beukens R (2002) Life spans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131CrossRefGoogle Scholar
  36. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 213:543–547CrossRefGoogle Scholar
  37. Roberts JM, Wheeler A, Freiwald A, Cairns S (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, New YorkCrossRefGoogle Scholar
  38. Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 137–156CrossRefGoogle Scholar
  39. Thresher RE, Adkins J, Thiagarajan N (2011) Modal analysis of the deep-water solitary scleractinian, Desmophyllum dianthus, on SW Pacific seamounts: inferred recruitment periodicity, growth, and mortality rates. Coral Reefs 30:1063–1070CrossRefGoogle Scholar
  40. Tsounis G, Orejas C, Reynaud S, Gili JM, Allemand D, Ferrier-Pagès C (2010) Prey-capture rates in four Mediterranean cold water corals. Mar Ecol Prog Ser 398:149–155CrossRefGoogle Scholar
  41. Vertino A, Savini A, Rosso A, Di Geronimo I, Mastrototaro F, Sanfilippo R, Gay G, Etiope G (2010) Benthic habitat characterization and distribution from two representative sites of the deep-water SML Coral Province (Mediterranean). Deep-Sea Res II 57:380–396CrossRefGoogle Scholar
  42. White M, Mohn C, de Stigter H, Mottram G (2005) Deepwater coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold water corals and ecosystems. Springer, Berlin, pp 503–514CrossRefGoogle Scholar
  43. Wienberg C, Hebbeln D, Fink HG, Mienis F, Dorschel B, Vertino A, López Correa M, Freiwald André (2009) Scleractinian cold-water corals in the Gulf of Cádiz—first clues about their spatial and temporal distribution. Deep Sea Res I 56:1873–1893CrossRefGoogle Scholar
  44. Wild C, Mayr C, Wehrmann LM, Schöttner S, Naumann M, Hoffmann F, Rapp HT (2008) Organic matter release by cold water corals and its implication for fauna-microbe interaction. Mar Ecol Prog Ser 372:67–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centre Scientifique de MonacoMonacoPrincipality of Monaco
  2. 2.Leibniz Center for Tropical Marine Ecology (ZMT), Coral Reef Ecology Group (CORE)BremenGermany
  3. 3.Instituto Español de OceanografíaCentro Oceanográfico de BalearesPalma de MallorcaSpain

Personalised recommendations