Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef

Abstract

Composed of a collection of algae, detritus, sediment and invertebrates, the epilithic algal matrix (EAM) is an abundant and ubiquitous feature of coral reefs. Despite its prevalence, there is a paucity of information regarding its associated invertebrate fauna. The cryptofaunal invertebrate community of the EAM was quantitatively investigated in Pioneer Bay on Orpheus Island, Great Barrier Reef. Using a vacuum collection method, a diversity of organisms representing 10 different phyla were identified. Crustacea dominated the samples, with harpacticoid copepods being particularly abundant (2025 ± 132 100 cm−2; mean density ± SE). The volume of coarse particulate matter in the EAM was strongly correlated with the abundance of harpacticoid copepods. The estimated biomass of harpacticoid copepods (0.48 ± 0.05 g m−2; wet weight) suggests that this group is likely to be important for reef trophodynamics and nutrient cycling.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ajiboye O, Yakubu A, Adams T, Olaji E, Nwogu N (2011) A review of the use of copepods in marine fish larviculture. Rev Fish Biol Fish 21:225–246

    Article  Google Scholar 

  2. Alldredge AL, King JM (1977) Distribution, abundance, and substrate preferences of demersal zooplankton at Lizard Island lagoon, Great Barrier Reef. Mar Biol 41:317–333

    Article  Google Scholar 

  3. Bellwood DR (1988) Ontogenetic changes in the diet of early post-settlement Scarus species (Pices, Scaridae). J Fish Biol 33:213–219

    Article  Google Scholar 

  4. Bellwood DR, Fulton CJ (2008) Sediment-mediated suppression of herbivory on coral reefs: Decreasing resilience to rising sea levels and climate change? Limnol Oceanogr 53:2695–2701

    Article  Google Scholar 

  5. Blanchard GF (1991) Measurement of meiofauna grazing rates on microphytobenthos: is primary production a limiting factor? J Exp Mar Biol Ecol 147:37–46

    Article  Google Scholar 

  6. Bonaldo R, Bellwood D (2011) Spatial variation in the effects of grazing on epilithic algal turfs on the Great Barrier Reef, Australia. Coral Reefs 30:381–390

    Google Scholar 

  7. Buffan-Dubau E, Carman KR (2000) Diel feeding behavior of meiofauna and their relationships with microalgal resources. Limnol Oceanogr 45:381–395

    Article  CAS  Google Scholar 

  8. Buffan-Dubau E, de Wit R, Castel J (1996) Feeding selectivity of the harpacticoid copepod Canuella perplexa in benthic muddy environments demonstrated by HPLC analyses of chlorin and carotenoid pigments. Mar Ecol Prog Ser 137:71–82

    Article  CAS  Google Scholar 

  9. Calder WA (1984) Size, function and life history. Harvard University Press, Cambridge

    Google Scholar 

  10. Carleton JH, McKinnon AD (2007) Resident mysids: secondary production, consumption, and trophic role in a coral reef lagoon. Mar Ecol Prog Ser 336:89–98

    Article  CAS  Google Scholar 

  11. Carman KR, Thistle D (1985) Microbial food partitioning by three species of benthic copepods. Mar Biol 88:143–148

    Article  Google Scholar 

  12. Choat JH, Clements KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs I: Dietary analyses. Mar Biol 140:613–623

    Article  CAS  Google Scholar 

  13. Coull BC (1990) Are members of the meiofauna food for higher trophic levels? Trans Am Microsc Soc 109:233–246

    Article  Google Scholar 

  14. Coull BC, Wells JBJ (1983) Refuges from fish predation: Experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64:1599–1609

    Article  Google Scholar 

  15. Cutts CJ (2003) Culture of harpacticoid copepods: Potential as live feed for rearing marine fish. Adv Mar Biol 44:295–316

    PubMed  Article  Google Scholar 

  16. Damuth J (1981) Population density and body size in mammals. Nature 290:699–700

    Article  Google Scholar 

  17. Danovaro R, Fraschetti S (2002) Meiofaunal vertical zonation on hard-bottoms: comparison with soft-bottom meiofauna. Mar Ecol Prog Ser 230:159–169

    Article  Google Scholar 

  18. Depczynski M, Bellwood DR (2003) The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar Ecol Prog Ser 256:183–191

    Article  Google Scholar 

  19. Depczynski M, Fulton C, Marnane M, Bellwood DR (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120

    PubMed  Article  Google Scholar 

  20. Dumont HJ, Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19:75–97

    Article  Google Scholar 

  21. Edgar GJ, Shaw C (1995) The production and trophic ecology of shallow-water fish assemblages in southern Australia II. Diets of fishes and trophic relationships between fishes and benthos at Western Port. Victoria. J Exp Mar Biol Ecol 194:83–106

    Article  Google Scholar 

  22. Enochs IC (2012) Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar Biol 159:709–722

    Article  Google Scholar 

  23. Enochs IC, Manzello DP (2012) Species richness of motile cryptofauna across a gradient of framework erosion. Coral Reefs doi: 10.1007/s00338-012-0886-z

  24. Enochs I, Toth L, Brandtneris V, Afflerbach J, Manzello D (2011) Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar Ecol Prog Ser 438:105–118

    Article  Google Scholar 

  25. Folkers C, George K (2011) Community analysis of sublittoral Harpacticoida (Copepoda, Crustacea) in the western Baltic Sea. Hydrobiologia 666:11–20

    Article  CAS  Google Scholar 

  26. Fox RJ, Bellwood DR (2007) Quantifying herbivory across a coral reef depth gradient. Mar Ecol Prog Ser 339:49–59

    Article  Google Scholar 

  27. Fredette TJ, Diaz RJ, Montfrans JV, Orth RJ (1990) Secondary production within a seagrass Bed (Zostera marina and Ruppia maritima) in Lower Chesapeake Bay. Estuaries 13:431–440

    Article  Google Scholar 

  28. Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Biol Ecol 224:1–30

    Article  Google Scholar 

  29. Gheerardyn H, De Troch M, Ndaro SGM, Raes M, Vincx M, Vanreusel A (2008) Community structure and microhabitat preferences of harpacticoid copepods in a tropical reef lagoon (Zanzibar Island, Tanzania). J Mar Biol Assoc UK 88:747–758

    Article  Google Scholar 

  30. Gibbons MJ (1988) The impact of sediment accumulations, relative habitat complexity and elevation on rocky shore meiofauna. J Exp Mar Biol Ecol 122:225–241

    Article  Google Scholar 

  31. Goatley CHR, Bellwood DR (2011) The roles of dimensionality, canopies and complexity in ecosystem monitoring. PLoS One 6:e27307

    PubMed  Article  CAS  Google Scholar 

  32. Harris R (1977) Some aspects of the biology of the harpacticoid copepod Scottolana canadensis (Willey), maintained in laboratory culture. Chesap Sci 18:245–252

    Article  Google Scholar 

  33. Hicks GRF (1980) Structure of phytal harpacticoid copepod assemblages and the influence of habitat complexity and turbidity. J Exp Mar Biol Ecol 44:157–192

    Article  Google Scholar 

  34. Kitting CL, Fry B, Morgan MD (1984) Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia 62:145–149

    Article  Google Scholar 

  35. Klumpp DW, McKinnon AD (1989) Temporal and spatial patterns in primary production of a coral-reef epilithic algal community. J Exp Mar Biol Ecol 131:1–22

    Article  Google Scholar 

  36. Klumpp DW, McKinnon AD (1992) Community structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef: Dynamics at different spatial scales. Mar Ecol Prog Ser 86:77–89

    Article  Google Scholar 

  37. Klumpp DW, McKinnon AD, Mundy CN (1988) Motile cryptofauna of a coral reef - abundance, distribution and trophic potential. Mar Ecol Prog Ser 45:95–108

    Article  Google Scholar 

  38. Logan D, Townsend KA, Townsend K, Tibbetts IR (2008) Meiofauna sediment relations in leeward slope turf algae of Heron Island reef. Hydrobiologia 610:269–276

    Article  Google Scholar 

  39. Lopez GR, Levinton JS (1987) Ecology of deposit-feeding animals in marine sediments. Q Rev Biol 62:235–260

    Article  Google Scholar 

  40. MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19:186–201

    Article  Google Scholar 

  41. Montagna PA, Blanchard GF, Dinet A (1995) Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates. J Exp Mar Biol Ecol 185:149–165

    Article  Google Scholar 

  42. Omori M (1969) Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. Mar Biol 3:4–10

    Article  CAS  Google Scholar 

  43. Peyrot-Clausade M (1980) Motile cryptofauna of Tulear reef flats. Mar Biol 59:43–47

    Article  Google Scholar 

  44. Preston NP, Doherty PJ (1994) Cross-shelf patterns in the community structure of coral-dwelling crustacea in the central region of the Great Barrier Reef. II. Cryptofauna. Mar Ecol Prog Ser 104:27–38

    Article  Google Scholar 

  45. Purcell SW (1996) A direct method for assessing sediment load in epilithic algal communities. Coral Reefs 15:211–213

    Google Scholar 

  46. Purcell SW, Bellwood DR (2001) Spatial patterns of epilithic algal and detrital resources on a windward coral reef. Coral Reefs 20:117–125

    Article  Google Scholar 

  47. Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202

    Article  Google Scholar 

  48. Roman MR, Furnas MJ, Mullin MM (1990) Zooplankton abundance and grazing at Davies Reef, Great Barrier Reef, Australia. Mar Biol 105:73–82

    Article  Google Scholar 

  49. Scott FJ, Russ GR (1987) Effects of grazing on species composition of the epilithic algal community on coral reefs of the central Great Barrier Reef. Mar Ecol Prog Ser 39:293–304

    Article  Google Scholar 

  50. Stella JS, Jones GP, Pratchett MS (2010) Variation in the structure of epifaunal invertebrate assemblages among coral hosts. Coral Reefs 29:957–973

    Article  Google Scholar 

  51. Syms C, Jones GP (2000) Disturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology 81:2714–2729

    Article  Google Scholar 

  52. Takada Y, Abe O, Shibuno T (2008) Cryptic assemblages in coral-rubble interstices along a terrestrial-sediment gradient. Coral Reefs 27:665–675

    Article  Google Scholar 

  53. Taylor RB (1998) Density, biomass and productivity of animals in four subtidal rocky reef habitats: the importance of small mobile invertebrates. Mar Ecol Prog Ser 172:37–51

    Article  Google Scholar 

  54. Tipton K, Bell SS (1988) Foraging patterns of two syngnathid fishes - importance of harpacticoid copepods. Mar Ecol Prog Ser 47:31–43

    Article  Google Scholar 

  55. Vytopil E, Willis BL (2001) Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20:281–288

    Article  Google Scholar 

  56. Wilson SK (2000) Trophic status and feeding selectivity of blennies (Blenniidae: Salariini). Mar Biol 136:431–437

    Article  Google Scholar 

  57. Wilson SK (2004) Growth, mortality and turnover rates of a small detritivorous fish. Mar Ecol Prog Ser 284:253–259

    Article  Google Scholar 

  58. Wilson SK, Bellwood DR (1997) Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar Ecol Prog Ser 153:299–310

    Article  CAS  Google Scholar 

  59. Wilson SK, Bellwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes Oceanogr Mar Biol Annu Rev 41:279–309

    Google Scholar 

  60. Wilson SK, Graham N, Polunin N (2006) Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar Biol 151:1069–1076

    Article  Google Scholar 

  61. Wittenberg M, Hunte W (1992) Effects of eutrophication and sedimentation on juvenile corals. 1. Abundance, mortality and community structure. Mar Biol 112:131–138

    Article  Google Scholar 

  62. Zeller DC (1988) Short-term effects of territoriality of a tropical damselfish and experimental exclusion of large fishes on invertebrates in algal turfs. Mar Ecol Prog Ser 44:85–93

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank S Leahy, C Lefévre, J Welsh and staff of Orpheus Island Research Station for their support in the field; J Kidgell, J Leonhardt, J Levy, T Sih, K Stegemann and J Welsh for their valuable assistance in processing samples; J Tanner for comments and criticisms on final drafts of the manuscript; and five anonymous reviewers for their helpful suggestions. This work was supported by the Australian Research Council (D.R.B.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. J. Kramer.

Additional information

Communicated by Biology Editor Dr. Mark Vermeij

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 149 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kramer, M.J., Bellwood, D.R. & Bellwood, O. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 31, 1007–1015 (2012). https://doi.org/10.1007/s00338-012-0924-x

Download citation

Keywords

  • Crustacea
  • Harpacticoid copepods
  • Trophodynamics
  • Turf algae
  • Benthic community