Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef

Abstract

In contrast to trophodynamic variations, the marked zonation in physical and biological processes across coral reefs and the concomitant changes in habitat and community structure are well documented. In this study, we demonstrate consistent spatial changes in the community-level trophodynamics of 46 species of fish across the fringing Ningaloo Reef, Western Australia, using tissue stable isotope and fatty acid analyses. Increasing nitrogen (δ15N) and decreasing carbon (δ13C) isotope ratios in the tissues of herbivores, planktivores and carnivores with increasing proximity to the ocean were indicative of increased reliance on oceanic productivity. In contrast, detritivores and corallivores displayed no spatial change in δ15N or δ13C, indicative of the dependence on reef-derived material across the reef. Higher δ13C, as well as increased benthic- and bacterial-specific fatty acids, suggested reliance on reef-derived production increased in back-reef habitats. Genus-level analyses supported community- and trophic group-level trends, with isotope modelling of species from five genera (Abudefduf sexfasciatus, Chromis viridis, Dascyllus spp., Pomacentrus spp. and Stegastes spp.), demonstrating declining access to oceanic zooplankton and, in the case of Pomacentrus spp. and Stegastes spp., a switch to herbivory in the back-reef. The spatial changes in fish trophodynamics suggest that the relative roles of oceanic and reef-derived nutrients warrant more detailed consideration in reef-level community ecology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Google Scholar 

  2. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  3. Atkinson MJ, Falter JL (2003) Coral reefs. In: Black K, Shimmield G (eds) Biogeochemistry of marine systems. CRC Press, Boca Raton, pp 40–64

    Google Scholar 

  4. Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440

    Article  Google Scholar 

  5. Carassou L, Kulbicki M, Nicola TJR, Polunin NVC (2008) Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquat Living Resour 21:1–12

    Article  Google Scholar 

  6. Cocheret de la Moriniere E, Pollux BJA, Nagelkerken I, Hemminga MA, Huiskes AHL, van der Velde G (2003) Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar Ecol-Prog Ser 246:279–289

    Article  Google Scholar 

  7. Cummings DO, Booth DJ, Lee RW, Simpson SJ, Pile AJ (2010) Ontogenetic diet shifts in the reef fish Pseudanthias rubrizonatus from isolated populations on the North-West Shelf of Australia. Mar Ecol-Prog Ser 419:211–222

    Article  Google Scholar 

  8. Deb D (1997) Trophic uncertainty vs parsimony in food web research. Oikos 78:191–194

    Article  Google Scholar 

  9. Elsdon TS, Ayvazian S, McMahon KW, Thorrold SR (2010) Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Mar Ecol Prog Ser 408:195–205

    CAS  Article  Google Scholar 

  10. Frederich B, Fabri G, Lepoint G, Vandewalle P, Parmentier E (2009) Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Recif of Toliara, Madagascar. Ichthyol Res 56:10–17

    Article  Google Scholar 

  11. Friedlander AM, Sandin SA, DeMartini EE, Sala E (2010) Spatial patterns of the structure of reef fish assemblages at a pristine atoll in the central Pacific. Mar Ecol-Prog Ser 410:219–231

    Article  Google Scholar 

  12. Froese R, Pauly D (2009) FishBase. www.fishbase.org, Accessed: Aug 2009

  13. Fry B, Lutes R, Northam M, Parker PL, Ogden J (1982) A C-13/C-12 comparison of food webs in Caribbean seagrass meadows and coral reefs. Aquat Bot 14:389–398

    Article  Google Scholar 

  14. Fry B, Cieri M, Hughes J, Tobias C, Deegan LA, Peterson B (2008) Stable isotope monitoring of benthic-planktonic coupling using salt marsh fish. Mar Ecol-Prog Ser 369:193–204

    CAS  Article  Google Scholar 

  15. Gerber R, Marshall N (1974) Reef pseudoplankton in the lagoon trophic systems. Proc 2nd Int Coral Reef Symp: 105–110

  16. Greenwood NDW, Sweeting CJ, Polunin NVC (2010) Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using delta N-15 and delta C-13. Coral Reefs 29:785–792

    Article  Google Scholar 

  17. Grol MGG, Nagelkerken I, Rypel AL, Layman CA (2011) Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish. Oecologia 165:79–88

    PubMed  Article  Google Scholar 

  18. Hammerschlag-Peyer CM, Layman CA (2010) Intrapopulation variation in habitat use by two abundant coastal fish species. Mar Ecol-Prog Ser 415:211–220

    Article  Google Scholar 

  19. Hamner WM, Jones MS, Carleton JH, Hauri IR, Williams DM (1988) Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull Mar Sci 42:459–479

    Google Scholar 

  20. Hamner WM, Colin PL, Hamner PP (2007) Export-import dynamics of zooplankton on a coral reef in Palau. Mar Ecol-Prog Ser 334:83–92

    Article  Google Scholar 

  21. Hanson CE, Pattiaratchi CB, Waite AM (2005) Sporadic upwelling on a downwelling coast: Phytoplankton responses to spatially variable nutrient dynamics off the Gascoyne region of Western Australia. Cont Shelf Res 25:1561–1582

    Article  Google Scholar 

  22. Hanson CE, Hyndes GA, Wang SF (2010) Differentiation of benthic marine primary producers using stable isotopes and fatty acids: Implications to food web studies. Aquat Bot 93:114–122

    CAS  Article  Google Scholar 

  23. Hata H, Umezawa Y (2011) Food habits of the farmer damselfish Stegastes nigricans inferred by stomach content, stable isotope, and fatty acid composition analyses. Ecol Res 26:809–818

    Article  Google Scholar 

  24. Hata H, Kudo S, Yamano H, Kurano N, Kayanne H (2002) Organic carbon flux in Shiraho coral reef (Ishigaki Island, Japan). Mar Ecol-Prog Ser 232:129–140

    Article  Google Scholar 

  25. Hernaman V, Probert PK, Robbins WD (2009) Trophic ecology of coral reef gobies: interspecific, ontogenetic, and seasonal comparison of diet and feeding intensity. Mar Biol 156:317–330

    Article  Google Scholar 

  26. Ho CT, Kao SJ, Dai CF, Hsieh HL, Shiah FK, Jan RQ (2007) Dietary separation between two blennies and the Pacific gregory in northern Taiwan: evidence from stomach content and stable isotope analyses. Mar Biol 151:729–736

    Article  Google Scholar 

  27. Ho CT, Fu YC, Sun CL, Kao SJ, Jan RQ (2009) Plasticity of feeding habits of two Plectroglyphidodon damselfishes on coral reefs in southern Taiwan: evidence from stomach content and stable isotope analyses. Zool Stud 48:649–656

    CAS  Google Scholar 

  28. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia (Berl) 120:314–326

    Article  Google Scholar 

  29. Hussey NE, Brush J, McCarthy ID, Fisk AT (2010) delta N-15 and delta C-13 diet-tissue discrimination factors for large sharks under semi-controlled conditions. Comp Biochem Physiol A-Mol Integr Physiol 155:445–453

    PubMed  Article  Google Scholar 

  30. Imbs AB, Yakovleva IM, Pham LQ (2010) Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral Sinularia sp. Fish Sci 76:375–380

    CAS  Article  Google Scholar 

  31. Kolasinski J, Frouin P, Sallon A, Rogers K, Bruggemann HJ, Potier M (2009) Feeding ecology and ontogenetic dietary shift of yellowstripe goatfish Mulloidichthys flavolineatus (Mullidae) at Reunion Island, SW Indian Ocean. Mar Ecol Prog Ser 386:181–195

    CAS  Article  Google Scholar 

  32. Kulbicki M, Bozec YM, Labrosse P, Letourneur Y, Mou-Tham G, Wantiez L (2005) Diet composition of carnivorous fishes from coral reef lagoons of New Caledonia. Aquat Living Resour 18:231–250

    Article  Google Scholar 

  33. Kuo SR, Shao KT (1991) Feeding habits of damselfishes (Pomacentridae) from the southern part of Taiwan. J Fish Soc Taiwan 18:165–176

    Google Scholar 

  34. Lebreton B, Richard P, Galois R, Radenac G, Pfleger C, Guillou G, Mornet F, Blanchard GF (2011) Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: Evidence from stable isotope and fatty acid analyses. Estuar Coast Shelf Sci 92:140–153

    CAS  Article  Google Scholar 

  35. Logan JM, Lutcavage ME (2008) A comparison of carbon and nitrogen stable isotope ratios of fish tissues following lipid extractions with non-polar and traditional chloroform/methanol solvent systems. Rapid Commun Mass Spectrom 22:1081–1086

    PubMed  CAS  Article  Google Scholar 

  36. McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    CAS  Article  Google Scholar 

  37. McMahon KW, Berumen ML, Mateo I, Elsdon TS, Thorrold SR (2011) Carbon isotopes in otolith amino acids identify residency of juvenile snapper (Family: Lutjanidae) in coastal nurseries. Coral Reefs 30:1135–1145

    Article  Google Scholar 

  38. Minagawa M, Wada E (1984) Stepwise enrichment of 15 N along food chains: Further evidence and the relation between [delta]15 N and animal age. Geochim Cosmochim Acta 48:1135–1140

    CAS  Article  Google Scholar 

  39. Mumby PJ, Edwards AJ, Arias-Gonzalez JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    PubMed  CAS  Article  Google Scholar 

  40. Nagelkerken I, Bothwell J, Nemeth RS, Pitt JM, van der Velde G (2008) Interlinkage between Caribbean coral reefs and seagrass beds through feeding migrations by grunts (Haemulidae) depends on habitat accessibility. Mar Ecol-Prog Ser 368:155–164

    Article  Google Scholar 

  41. Nagelkerken I, van der Velde G, Wartenbergh SLJ, Nugues MM, Pratchett MS (2009) Cryptic dietary components reduce dietary overlap among sympatric butterflyfishes (Chaetodontidae). J Fish Biol 75:1123–1143

    PubMed  CAS  Article  Google Scholar 

  42. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5:e9672

    PubMed  Article  Google Scholar 

  43. Parrish JD (1989) Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar Ecol-Prog Ser 58:143–160

    Article  Google Scholar 

  44. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, assumptions. Ecology 83:703–718

    Article  Google Scholar 

  45. Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    PubMed  Article  Google Scholar 

  46. Pratchett MS, Gust N, Goby G, Klanten SO (2001) Consumption of coral propagules represents a significant trophic link between corals and reef fish. Coral Reefs 20:13–17

    Article  Google Scholar 

  47. Sotiropoulos MA, Tonn WM, Wassenaar LI (2004) Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish 13:155–160

    Article  Google Scholar 

  48. Sweeting CJ, Polunin NVC, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun Mass Spectrom 20:595–601

    PubMed  CAS  Article  Google Scholar 

  49. van Duyl F, Moodley L, Nieuwland G, van Ijzerloo L, van Soest R, Houtekamer M, Meesters E, Middelburg J (2011) Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints. Mar Biol 158:1653–1666

    CAS  Article  Google Scholar 

  50. Vander Zanden MJ, Rasmussen JB (2001) Variation in delta N-15 and delta C-13 trophic fractionation: Implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066

    CAS  Article  Google Scholar 

  51. Verweij MC, Nagelkerken I, Hans I, Ruseler SM, Mason PRD (2008) Seagrass nurseries contribute to coral reef fish populations. Limnol Oceanogr 53:1540–1547

    Article  Google Scholar 

  52. Ward EJ, Semmens BX, Schindler DE (2010) Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ Sci Technol 44:4645–4650

    PubMed  CAS  Article  Google Scholar 

  53. Wells RJD, Cowan JH, Fry B (2008) Feeding ecology of red snapper Lutjanus campechanus in the northern Gulf of Mexico. Mar Ecol-Prog Ser 361:213–225

    Article  Google Scholar 

  54. Wilson SK, Depczynski M, Fisher R, Holmes TH, O’Leary RA, Tinkler P (2010) Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae. PLoS ONE 5:e15185

    PubMed  Article  Google Scholar 

  55. Wyatt ASJ (2011) Oceanographic ecology of coral reefs: the role of oceanographic processes in reef-level biogeochemistry and trophic ecology. Ph.D. Thesis, The University of Western Australia, p 349

  56. Wyatt ASJ, Waite AM, Humphries S (2010a) Variability in isotope discrimination factors in coral reef fishes: Implications for diet and food web reconstruction. PLoS ONE 5:e13682. doi:10.1371/journal.pone.0013682

    PubMed  Article  Google Scholar 

  57. Wyatt ASJ, Lowe RJ, Humphries S, Waite AM (2010b) Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar Ecol-Prog Ser 405:113–130

    CAS  Article  Google Scholar 

  58. Wyatt ASJ, Falter JL, Lowe RJ, Humphries S, Waite AM (2012) Oceanographic forcing of nutrient uptake and release over a fringing coral reef. Limnol Oceanogr 57:401–419

    CAS  Article  Google Scholar 

Download references

Acknowledgments

F. McGregor and K. Brooks provided valuable sampling assistance. Sample grinding facilities were generously made available by P. Grierson, West Australian Biogeochemistry Centre. Isotope analysis was performed by J. Tranter, Natural Isotopes/Edith Cowan University. Fatty acid analysis was performed by S. Wang, ChemCentre, Perth. Funding was provided by a Natural Environment Research Council Advanced Fellowship (NE/B500690/1) and a grant from the British Ecological Society to SH; grants from The University of Western Australia, the Faculty of Engineering, Computing and Mathematical Sciences and the Western Australian Marine Science Institution (Node 3) to AMW; an Australian Research Council (ARC) Discovery Grant #DP0663670 to AMW et al.; an Australian Coral Reef Society Fellowship to ASJW; and CSIRO Wealth from Oceans funding to AMW and to ASJW. The authors would like to acknowledge the support provided by the Australian-American Fulbright Commission during manuscript preparation in the form of a Fulbright Western Australia Scholarship to ASJW. The manuscript was improved by comments from P. Munday and four anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. J. Wyatt.

Additional information

Communicated by Biology Editor Prof. Philip Munday

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 467 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wyatt, A.S.J., Waite, A.M. & Humphries, S. Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31, 1029–1044 (2012). https://doi.org/10.1007/s00338-012-0923-y

Download citation

Keywords

  • Carbon
  • Ningaloo Reef
  • Nitrogen
  • Particulate organic matter
  • Recycling
  • Stable isotope analysis